Giải bài 4.35 trang 72 SGK Toán 10 – Kết nối tri thức


Trong mặt phẳng tọa độ Oxy, cho A (2; 1), B (-2; 5) và C (-5; 2). a) Tìm tọa độ của các vectơ BA và BC b) Chứng minh rằng A, B, C là ba đỉnh của một tam giác vuông. Tính diện tích và chu vi của tam giác đó. c) Tìm tọa độ trọng tâm G của tam giác ABC. d) Tìm tọa độ của điểm D sao cho tứ giác BCAD là một hình bình hành.

Tổng hợp đề thi giữa kì 2 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Trong mặt phẳng tọa độ Oxy, cho A (2; 1), B (-2; 5) và C (-5; 2).

a) Tìm tọa độ của các vectơ BABC

b) Chứng minh rằng A, B, C là ba đỉnh của một tam giác vuông. Tính diện tích và chu vi của tam giác đó.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

d) Tìm tọa độ của điểm D sao cho tứ giác BCAD là một hình bình hành.

Phương pháp giải - Xem chi tiết

a) Tọa độ của vectơ: BA=(xAxB;yAyB)

b) Tính BA.BC=0, chỉ ra góc vuông trong tam giác ABC.

c) Công thức tọa độ của trọng tâm G là (xA+xB+xC3;yA+yB+yC3)

d) BCAD là một hình bình hành BC=AD

Lời giải chi tiết

a) Ta có:  BA=(2(2);15)=(4;4)BC=(5(2);25)=(3;3)

b)

Ta có: BA.BC=4.(3)+(4).(3)=0

BABC hay ^ABC=90o

Vậy tam giác ABC vuông tại B.

Lại có: AB=|BA|=42+(4)2=42; BC=|BC|=32+(3)2=32

AC=AB2+BC2=52 (do ΔABCvuông tại B).

Diện tích tam giác ABC là: SABC=12.AB.BC=12.42.32=12

Chu vi tam giác ABC là: AB+BC+AC=42+32+52=122

c) Tọa độ của trọng tâm G là (2+(2)+(5)3;1+5+23)=(53;83)

d) Giả sử điểm D thỏa mãn BCAD là một hình bình hành có tọa độ là (a; b).

Ta có: CB=(3;3)AD=(a2;b1)

Vì BCAD là một hình bình hành  nên AD=CB

(a2;b1)=(3;3){a2=3b1=3{a=5b=4

Vậy D có tọa độ (5; 4)


Bình chọn:
4.1 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.