Giải bài 3 trang 72 SGK Toán 10 tập 1 – Chân trời sáng tạo


Cho tam giác ABC, biết cạnh. Tính các góc, các cạnh còn lại và bán kính đường tròn ngoại tiếp của tam giác đó.

Đề bài

Cho tam giác ABC, biết cạnh \(a = 152,\;\widehat B = {79^o},\;\widehat C = {61^o}.\) Tính các góc, các cạnh còn lại và bán kính đường tròn ngoại tiếp của tam giác đó.

Phương pháp giải - Xem chi tiết

Áp dụng định lí sin:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)

Lời giải chi tiết

 

Đặt \(AB = c,AC = b,BC = a.\)

Ta có: \(a = 152;\widehat A = {180^o} - ({79^o} + {61^o}) = {40^o}\)

Áp dụng định lí sin, ta có:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)

Suy ra:

\(\begin{array}{l}AC = b = \frac{{a.\sin B}}{{\sin A}} = \frac{{152.\sin {{79}^o}}}{{\sin {{40}^o}}} \approx 232,13\\AB = c = \frac{{a.\sin C}}{{\sin A}} = \frac{{152.\sin {{61}^o}}}{{\sin {{40}^o}}} \approx 206,82\\R = \frac{a}{{2\sin A}} = \frac{{152}}{{2\sin {{40}^o}}} \approx 118,235\end{array}\)


Bình chọn:
4.4 trên 17 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí