Giải bài 3 trang 44 sách bài tập toán 10 - Chân trời sáng tạo


Một giải đấu có 4 đội bóng A, B, C, D tham gia. Các đội đấu vòng tròn một lượt để tính điểm và xếp hàng.

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Một giải đấu có 4 đội bóng A, B, C, D tham gia. Các đội đấu vòng tròn một lượt để tính điểm và xếp hàng.

a) Có tất cả bao nhiêu trận đấu?

b) Có tất cả bao nhiêu khả năng có thể xảy ra về đội vô địch và đội á quân?

c) Có bao nhiêu khả năng về bảng xếp hạng sau khi giải đấu kết thúc? Biết rằng không có hai đội bóng nào đồng hàng

Lời giải chi tiết

a) Cứ 2 đội bất kì thì có một trận đấu.

=> Số trận đấu là số cách chọn 2 đội từ 4 đội đó, là số tổ hợp chập 2 của 4: \(C_4^2 = \frac{{4!}}{{2!2!}} = 6\)

b) Chọn 2 đội trong 4 đội, có sắp xếp thứ tự cho 2 vị trí quán quân và á quân

=> Số kết quả của giải đấu là số chỉnh hợp chập 2 của 4: \(A_4^2 = \frac{{4!}}{{2!}} = 12\)

Cách 2: Kết quả của giải đấu thực hiện bởi 2 công đoạn:

Chọn 1 đội là quán quân: có 4 cách

Chọn 1 đội á quân: có 3 cách (do phải khác đội quán quân đã chon)

=> Vậy có 4.3 =12 kết quả có thể xảy ra

c) Các vị trí xếp hạng là khác nhau, vì không có đội nào cùng hạng, nên 4 đội tươn ứng với 4 vị trí xếp hạng

Mỗi kết quả về bảng xếp hạng là một hoán vị của 4 đội

Số kết quả của bảng xếp hạng sau khi giải đấu kết thúc là: 4! = 24


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí