Giải bài 2.18 trang 26 sách bài tập toán 10 - Kết nối tri thức với cuộc sống>
Miền nghiệm của hệ bất phương trình
Đề bài
Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge - 1}\\{x + y \le 0}\\{y \ge 0}\end{array}} \right.\) là:
A. Một nửa mặt phẳng.
B. Miền tam giác.
C. Miền tứ giác.
D. Miền ngũ giác.
Phương pháp giải - Xem chi tiết
- Vẽ các bất phương trình trên cùng một mặt phẳng tọa độ \(Oxy.\)
- Xác định miền nghiệm của hệ bất phương trình đã cho.
Lời giải chi tiết
Miền nghiệm của bất phương trình \(x \ge - 1\) là nửa mặt phẳng bờ \(d:x = - 1\) chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của bất phương trình \(x + y \le 0\) là nửa mặt phẳng bờ \({d_1}:x + y = 0\) chứa điểm \(\left( { - 1;0} \right).\)
Miền nghiệm của bất phương trình \(y \ge 0\) là nửa mặt phẳng bờ \({d_2}:y = 0\) chứa điểm \(\left( {0;1} \right).\)
Miền nghiệm của hệ bất phương trình trên là tam giác \(OAB.\)
Chọn B
- Giải bài 2.19 trang 26 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 2.20 trang 26 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 2.21 trang 26 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 2.22 trang 26 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 2.23 trang 26 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay