Giải bài 1 trang 35 sách bài tập toán 10 - Chân trời sáng tạo


Tìm bất phương trình có miền nghiệm là miền không gạch chéo (kể cả bờ d) trong hình 4 (mỗi ô vuông có cạnh là 1 đơn vị)

Đề bài

Tìm bất phương trình có miền nghiệm là miền không gạch chéo (kể cả bờ d) trong hình 4 (mỗi ô vuông có cạnh là 1 đơn vị)

Phương pháp giải - Xem chi tiết

Bước 1: Gọi phương trình tổng quát của đường thẳng bờ

Bước 2: Xác định các điểm đường thẳng đi qua và xác định phương trình

Bước 3: Thay tọa độ điểm O(0;0) là nghiệm của bất phương trình cần tìm và xác định dấu của bất phương trình

Lời giải chi tiết

Vì bờ của bất pương trình có dạng là đường thẳng tuyến tính nên phương trình tổng quát có dạng \(y = ax + b\)

Dựa vào hình 4 ta thấy đường thẳng đi qua điểm có tọa độ (6;0) và (0;3)

Thay tọa độ 2 điểm trên vào phương trình tổng quát ta có hệ phương trình hai ẩn như sau:          \(\left\{ \begin{array}{l}0 = 6a + b\\3 = 0a + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{1}{2}\\b = 3\end{array} \right.\)

Vậy phương trình bờ là  \(y =  - \frac{1}{2}x + 3 \Rightarrow F = \frac{1}{2}x + y - 3\)

Thay \(x = 0,y = 0\) vào phương trình trên ta có \(F = -3 < 0\)

Mặt khác ta thấy gốc tọa độ là nghiệm của bất phương trình (theo hình vẽ) và chứa cả bờ nên ta có bất phương trình cần tìm là \(\frac{1}{2}x + y - 3 \le 0\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí