Giải mục 1 trang 60, 61 SGK Toán 10 tập 1 - Kết nối tri thức
Trên trục số Ox, gọi A là điểm biểu diễn số 1 và đặt OA=i (H.4.32a). Gọi M là điểm biểu diễn số 4, N là điểm biểu diễn số -3/2. Hãy biểu thị mỗi vectơ OM, ON theo vectơ i Trong Hình 4.33: a) Hãy biểu thị mỗi vectơ OM, ON theo các vectơ i, j. Tìm tọa độ của vecto 0
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
HĐ1
Trên trục số Ox, gọi A là điểm biểu diễn số 1 và đặt \(\overrightarrow {OA} = \overrightarrow i \) (H.4.32a). Gọi M là điểm biểu diễn số 4, N là điểm biểu diễn số \( - \frac{3}{2}\). Hãy biểu thị mỗi vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) theo vectơ \(\overrightarrow i \).
Phương pháp giải:
+) \(\overrightarrow a = k.\overrightarrow b ,\quad (k > 0) \Leftrightarrow \) Vecto \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng, \(\left| {\overrightarrow a } \right| = k.\left| {\overrightarrow b } \right|\quad (k > 0)\)
+) \(\overrightarrow a = k.\overrightarrow b ,\quad (k < 0) \Leftrightarrow \) Vecto \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng, \(\left| {\overrightarrow a } \right| = - k.\left| {\overrightarrow b } \right|\quad (k < 0)\)
(\(\overrightarrow b \ne \overrightarrow 0 \))
Lời giải chi tiết:
Dễ thấy:
vectơ \(\overrightarrow {OM} \) cùng hướng với vectơ \(\overrightarrow i \) và \(\left| {\overrightarrow {OM} } \right| = 4 = 4\left| {\overrightarrow i } \right|\)
Do đó: \(\overrightarrow {OM} = 4\,.\,\overrightarrow i \)
Tương tự, vectơ \(\overrightarrow {ON} \) ngược hướng với vectơ \(\overrightarrow i \) và \(\left| {\overrightarrow {ON} } \right| = \frac{3}{2} = \frac{3}{2}\left| {\overrightarrow i } \right|\)
Do đó: \(\overrightarrow {ON} = - \frac{3}{2}\,.\,\overrightarrow i \)
HĐ2
Trong Hình 4.33:
a) Hãy biểu thị mỗi vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) theo các vectơ \(\overrightarrow i ,\;\overrightarrow j \).
b) Hãy biểu thị vectơ \(\overrightarrow {MN} \) theo các vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) từ đó biểu thị vectơ \(\overrightarrow {MN} \) theo các vectơ \(\overrightarrow i ,\;\overrightarrow j \).
Phương pháp giải:
a) Quy tắc hình bình hành:
Tứ giác OAMB là hình bình hành thì \(\overrightarrow {OM} = \overrightarrow {OA} + \overrightarrow {OB} \)
b) Quy tắc hiệu: \(\overrightarrow {MN} = \overrightarrow {ON} - \;\overrightarrow {OM} \)
Lời giải chi tiết:
Dựng hình bình hành OAMB và OCND như hình dưới:
Khi đó: \(\overrightarrow {OM} = \overrightarrow {OA} + \overrightarrow {OB} \) và \(\overrightarrow {ON} = \overrightarrow {OC} + \overrightarrow {OD} \).
Dễ thấy:
\(\overrightarrow {OA} = 3\;\overrightarrow i ;\;\,\overrightarrow {OB} = 5\;\overrightarrow j \) và \(\overrightarrow {OC} = - 2\;\overrightarrow i ;\;\,\overrightarrow {OD} = \frac{5}{2}\;\overrightarrow j \)
\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {OM} = 3\;\overrightarrow i + 5\;\overrightarrow j \\\overrightarrow {ON} = - 2\;\overrightarrow i + \frac{5}{2}\;\overrightarrow j \end{array} \right.\)
b) Ta có: \(\overrightarrow {MN} = \overrightarrow {ON} - \;\overrightarrow {OM} \) (quy tắc hiệu)
\(\begin{array}{l} \Rightarrow \overrightarrow {MN} = \left( { - 2\;\overrightarrow i + \frac{5}{2}\;\overrightarrow j } \right) - \left( {\;3\;\overrightarrow i + 5\;\overrightarrow j } \right)\\ \Leftrightarrow \overrightarrow {MN} = \left( { - 2\;\overrightarrow i - 3\;\overrightarrow i } \right) + \left( {\frac{5}{2}\;\overrightarrow j - 5\;\overrightarrow j } \right)\\ \Leftrightarrow \overrightarrow {MN} = - 5\;\overrightarrow i - \frac{5}{2}\;\overrightarrow j \end{array}\)
Vậy \(\overrightarrow {MN} = - 5\;\overrightarrow i - \frac{5}{2}\;\overrightarrow j \).
Luyện tập 1
Tìm tọa độ của \(\overrightarrow 0 \)
Lời giải chi tiết:
Vì: \(\overrightarrow 0 = 0.\;\overrightarrow i + 0.\;\overrightarrow j \) nên \(\overrightarrow 0 \) có tọa độ là (0;0).
- Giải mục 2 trang 61, 62, 63, 64 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải bài 4.16 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.17 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.18 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.19 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức