Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài 10. Vectơ trong mặt phẳng tọa độ Toán 10 Kết nối tr..
Giải bài 4.16 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức>
Trong mặt phẳng tọa độ Oxy, cho các điểm M(1; 3), N(4; 2) a) Tính độ dài các đoạn thẳng OM, ON, MN. b) Chứng minh rằng tam giác OMN vuông cân.
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Trong mặt phẳng tọa độ Oxy, cho các điểm M(1; 3), N(4; 2).
a) Tính độ dài các đoạn thẳng OM, ON, MN.
b) Chứng minh rằng tam giác OMN vuông cân.
Phương pháp giải - Xem chi tiết
Độ dài vectơ \(\overrightarrow {OM} (x,y)\) là \(|\overrightarrow {OM} | = \sqrt {{x^2} + {y^2}} \).
Lời giải chi tiết
a) Ta có: M(1; 3) và N (4; 2).
\( \overrightarrow {OM} (1;3)\).
\(\overrightarrow {ON} (4;2)\).
\(\overrightarrow {MN} = (4 - 1;2 - 3) = (3; - 1)\).
\( OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{1^2} + {3^2}} = \sqrt {10}\).
\(ON = \left| {\overrightarrow {ON} } \right| = \sqrt {{4^2} + {2^2}} = 2\sqrt 5\).
\(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} = \sqrt {10} \).
b) Dễ thấy: \(OM = \sqrt {10} = MN\) suy ra \( \Delta OMN\) cân tại M.
Lại có: \(O{M^2} + M{N^2} = 10 + 10 = 20 = O{N^2}\).
Theo định lí Pythagore đảo, ta có \(\Delta OMN\) vuông tại M.
Vậy \(\Delta OMN\) vuông cân tại M.
- Giải bài 4.17 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.18 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.19 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.20 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải mục 2 trang 61, 62, 63, 64 SGK Toán 10 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




