Giải bài 4.16 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức


Đề bài

Trong mặt phẳng tọa độ Oxy, cho các điểm M(1; 3), N(4; 2)

a) Tính độ dài các đoạn thẳng OM, ON, MN.

b) Chứng minh rằng tam giác OMN vuông cân.

Phương pháp giải - Xem chi tiết

Độ dài vectơ \(\overrightarrow {OM} (x,y)\) là \(|\overrightarrow {OM} |\; = \sqrt {{x^2} + {y^2}} \)

Lời giải chi tiết

a) Ta có: M(1; 3) và N (4; 2)

\( \Rightarrow \overrightarrow {OM} (1;3),\;\,\overrightarrow {ON} (4;2),\;\overrightarrow {MN}  = (4 - 1;2 - 3) = (3; - 1)\)

\( \Rightarrow OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{1^2} + {3^2}}  = \sqrt {10} ,\)\(ON = \left| {\overrightarrow {ON} } \right| = \sqrt {{4^2} + {2^2}}  = 2\sqrt 5 ,\)\(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}}  = \sqrt {10} \)

b) Dễ thấy: \(OM = \sqrt {10}  = MN\)\( \Rightarrow \Delta OMN\) cân tại M.

Lại có: \(O{M^2} + M{N^2} = 10 + 10 = 20 = O{N^2}\)

\( \Rightarrow \) Theo định lí Pythagore đảo, ta có \(\Delta OMN\)vuông tại M.

Vậy \(\Delta OMN\) vuông cân tại M.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 4.17 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức

    Trong mặt phẳng tọa độ Oxy, cho các vectơ a=3.i-2j , b={4; - 1} và các điểm M (-3; 6), N(3; -3). a) Tìm mối liên hệ giữa các vectơ MN và 2a-b. b) Các điểm O, M, N có thẳng hàng hay không? c) Tìm điểm P(x; y) để OMNP là một hình bình hành.

  • Giải bài 4.18 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức

    Trong mặt phẳng tọa độ Oxy, cho các điểm A(1; 3), B(2; 4), C(-3; 2). a) Hãy giải thích vì sao các điểm A, B, C không thẳng hàng. b) Tìm tọa độ trung điểm M của đoạn thẳng AB. c) Tìm tọa độ trọng tâm G của tam giác ABC. d) Tìm điểm D(x; y) để O(0; 0) là trọng tâm của tam giác ABD.

  • Giải bài 4.19 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức

    Sự chuyển động của một tàu thủy được thể hiện trên một mặt phẳng tọa độ như sau: Tàu khởi hành từ vị trí A(1; 2) chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vectơ v = {3;4}. Xác định vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 1,5 giờ.

  • Giải bài 4.20 trang 65 SGK Toán 10 tập 1 – Kết nối tri thức

    Trong hình 4.38, quân mã đang ở vị trí có tọa độ (1; 2). Hỏi sau một nước đi, quân mã có thể đến những vị trí nào?

  • Giải mục 2 trang 61, 62, 63, 64 SGK Toán 10 tập 1 - Kết nối tri thức

    Trong mặt phẳng tọa độ Oxy, cho u = (2; - 3), v = (4;1), a = (8; - 12 Trong mặt phẳng tọa độ Oxy, cho điểm M(x0, y0). Gọi P, Q tương ứng là hình chiếu vuông góc của M trên trục hoành Ox và trục tung Oy (H.4.35) Trong mặt phẳng tọa độ Oxy, cho các điểm M(x;y) và N(x’; y’) Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 1), B(3; 3). Từ thông tin dự báo được đưa ra ở đầu bài học, hãy xác định tọa độ vị trí M của tâm bão tại thời điểm 9 giờ trong khoảng thời gian 12 giờ của dự báo.

>> Xem thêm