Giải bài 99 trang 42 sách bài tập toán 12 - Cánh diều


Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = x.{e^x}). a) (y' = {e^x} + x.{e^x}). b) (y' = 0) khi (x = - 1,x = 0). c) (y' > 0) khi (x in left( { - 1; + infty } right)) và (y' < 0) khi (x in left( { - infty ; - 1} right)). d) Hàm số đạt cực đại tại (x = - 1).

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).
Cho hàm số \(y = x.{e^x}\).
a) \(y' = {e^x} + x.{e^x}\).
b) \(y' = 0\) khi \(x = - 1,x = 0\).
c) \(y' > 0\) khi \(x \in \left( { - 1; + \infty } \right)\) và \(y' < 0\) khi \(x \in \left( { - \infty ; - 1} \right)\).
d) Hàm số đạt cực đại tại \(x = - 1\).

Phương pháp giải - Xem chi tiết

‒ Dựa vào hình dáng của đồ thị hàm số.

‒ Xét giao điểm của đồ thị hàm số với các trục toạ độ.

‒ Xét các điểm cực trị của hàm số.

Lời giải chi tiết

• Căn cứ hình dáng của đồ thị hàm số, ta có: \(a > 0\). Vậy a) đúng.

• Đồ thị cắt trục tung tại điểm \(\left( {0;d} \right)\) nằm phía trên trục hoành nên điểm đó có tung độ dương. Vậy b) đúng.

• Đồ thị hàm số có hai điểm cực trị nằm ở hai phía trục tung. Vậy c) sai.

• Trung điểm của đoạn nối hai điểm cực trị \({x_1},{x_2}\) nằm bên phải trục tung nên \({x_1} + {x_2} =  - \frac{{2b}}{{3{\rm{a}}}} > 0 \Leftrightarrow \frac{{2b}}{{3{\rm{a}}}} < 0\). Do \(a > 0\) nên \(b < 0\). Vậy d) đúng.

a) Đ.                                  

b) S.                                  

c) Đ.                                  

d) S.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 100 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {2^{{x^2} - 1}}). a) (y' = left( {{x^2} - 1} right){.2^{{x^2} - 2}}). b) (y' = 0) khi (x = - 1,x = 1). c) (yleft( { - 2} right) = 8,yleft( { - 1} right) = 1,yleft( 1 right) = 1). d) Trên đoạn (left[ { - 2;1} right]), hàm số đạt giá trị nhỏ nhất bằng 1, giá trị lớn nhất bằng 8.

  • Giải bài 101 trang 42 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{3{rm{x}} - 2}}{{1 - x}}). a) Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = 1). b) Đồ thị hàm số có tiệm cận ngang là đường thẳng (y = 3). c) Điểm (M) nằm trên đồ thị hàm số có hoành độ ({x_0} ne 1) thì tung độ là ({y_0} = - 3 - frac{1}{{{x_0} - 1}}). d) Tích khoảng cách từ điểm (M) bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.

  • Giải bài 102 trang 43 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số bậc ba (y = fleft( x right) = a{x^3} + b{x^2} + cx + d) có đồ thị là đường cong như Hình 30. a) Phương trình (fleft( x right) = 4) có hai nghiệm (x = - 1,x = 2). b) Phương trình (fleft( x right) = - 1) có hai nghiệm. c) Phương trình (fleft( x right) = 2) có ba nghiệm. d) Phương trình (fleft( {fleft( x right)} right) = 4) có sáu nghiệm.

  • Giải bài 103 trang 43 sách bài tập toán 12 - Cánh diều

    Cho hàm số \(y = f\left( x \right)\) xác định trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\), đồ thị hàm số là đường cong và có bốn đường tiệm cận như Hình 31. Căn cứ vào đồ thị hàm số: a) Viết phương trình đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số. b) Lập bảng biến thiên của hàm số.

  • Giải bài 104 trang 43 sách bài tập toán 12 - Cánh diều

    Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ { - 2} right}) và có bảng biến thiên như sau: a) Tìm điểm cực đại, cực tiểu; giá trị cực đại, cực tiểu của hàm số. b) Viết phương trình đường tiệm cận đứng của đồ thị hàm số. c) Đồ thị hàm số có đường tiệm cận ngang không? Vì sao? d) Tìm công thức xác định hàm số, biết hàm số (fleft( x right)) có dạng (fleft( x right) = frac{{a{x^2} + b{rm{x}} + c}}{{x + n}})

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí