Giải bài 92 trang 40 sách bài tập toán 12 - Cánh diều


Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x - 2sin x) trên đoạn (left[ {0;pi } right]) lần lượt là: A. (M = pi ,m = frac{pi }{3} - sqrt 3 ). B. (M = pi ,m = 0). C. (M = pi ,m = frac{pi }{6} - 1). D. (M = pi ,m = frac{{2pi }}{3} - sqrt 3 ).

Đề bài

Giá trị lớn nhất \(M\) và giá trị nhỏ nhất \(m\) của hàm số \(y = x - 2\sin x\) trên đoạn \(\left[ {0;\pi } \right]\) lần lượt là:

A. \(M = \pi ,m = \frac{\pi }{3} - \sqrt 3 \)                   

B. \(M = \pi ,m = 0\)

C. \(M = \pi ,m = \frac{\pi }{6} - 1\)                              

D. \(M = \pi ,m = \frac{{2\pi }}{3} - \sqrt 3 \)

Phương pháp giải - Xem chi tiết

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).

Bước 3. So sánh các giá trị tìm được ở Bước 2.

Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).

Lời giải chi tiết

Ta có: \(y' = 1 - 2\cos x\)

Khi đó, trên đoạn \(\left[ {0;\pi } \right]\), \(y' = 0\) khi \(x = \frac{\pi }{3}\).

\(y\left( 0 \right) = 0;y\left( {\frac{\pi }{3}} \right) = \frac{\pi }{3} - \sqrt 3 ;y\left( \pi  \right) = \pi \).

Vậy \(M = \mathop {\max }\limits_{\left[ {0;\pi } \right]} y = \pi \) tại \(x = \pi \); \(m = \mathop {\min }\limits_{\left[ {0;\pi } \right]} y = \frac{\pi }{3} - \sqrt 3 \) tại \(x = \frac{\pi }{3}\).

Chọn A.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 93 trang 41 sách bài tập toán 12 - Cánh diều

    Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x.ln {rm{x}}) trên đoạn (left[ {1;{e^2}} right]) bằng: A. (M = 0,m = - frac{1}{e}). B. (M = frac{1}{e},m = 0). C. (M = 2{{rm{e}}^2},m = 0). D. (M = 2{{rm{e}}^2},m = - frac{1}{e}).

  • Giải bài 94 trang 41 sách bài tập toán 12 - Cánh diều

    Đồ thị hàm số nào sau đây nhận đường thẳng (y = - 2) làm tiệm cận ngang? A. (y = frac{{2{rm{x}} - 1}}{{ - 1 + x}}). B. (y = frac{{ - x + 1}}{{2{rm{x}} - 1}}). C. (y = frac{{x + 1}}{{x + 2}}). D. (y = frac{{ - 2{rm{x + }}1}}{{x - 3}}).

  • Giải bài 95 trang 41 sách bài tập toán 12 - Cánh diều

    Tiệm cận xiên của đồ thị hàm số (y = frac{{3{{rm{x}}^2} + x - 2}}{{x - 2}}) là đường thẳng: A. (y = - 3{rm{x}} + 7). B. (y = 3{rm{x}} + 7). C. (y = 3{rm{x}} - 7). D. (y = - 3{rm{x}} - 7).

  • Giải bài 96 trang 41 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 27 là đồ thị của hàm số: A. \(y = 2{{\rm{x}}^3} + 2\). B. \(y = {x^3} - {x^2} + 2\). C. \(y = - {x^3} + 3{\rm{x}} + 2\). D. \(y = {x^3} + x + 2\).

  • Giải bài 97 trang 41 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 28 là đồ thị của hàm số: A. \(y = \frac{{ - 2{\rm{x}} + 1}}{{{\rm{x}} + 1}}\). B. \(y = \frac{{{\rm{x}} + 1}}{{ - x - 2}}\). C. \(y = \frac{{ - {\rm{x}} + 1}}{{x + 2}}\). D. \(y = \frac{{x - 2}}{{x + 2}}\).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí