Giải bài 91 trang 40 sách bài tập toán 12 - Cánh diều


Giá trị lớn nhất của hàm số (y = x + sqrt {1 - {x^2}} ) bằng: A. (sqrt 2 ). B. (sqrt 5 ). C. 1. D. 2.

Đề bài

Giá trị lớn nhất của hàm số \(y = x + \sqrt {1 - {x^2}} \) bằng:

A. \(\sqrt 2 \).                    

B. \(\sqrt 5 \).                    

C. 1.                                  

D. 2.

Phương pháp giải - Xem chi tiết

Tìm tập xác định của hàm số, sau đó tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn.

Lời giải chi tiết

Hàm số có tập xác định là \(\left[ { - 1;1} \right]\).

Ta có: \(y' = 1 + \frac{{{{\left( {1 - {x^2}} \right)}^\prime }}}{{2\sqrt {1 - {x^2}} }} = 1 - \frac{{2{\rm{x}}}}{{2\sqrt {1 - {x^2}} }} = 1 - \frac{{\rm{x}}}{{\sqrt {1 - {x^2}} }}\)

Khi đó, trên đoạn \(\left[ { - 1;1} \right]\), \(y' = 0\) khi \(x =  - \frac{{\sqrt 2 }}{2}\) hoặc \(x = \frac{{\sqrt 2 }}{2}\).

\(y\left( { - 1} \right) =  - 1;y\left( { - \frac{{\sqrt 2 }}{2}} \right) = 0;y\left( {\frac{{\sqrt 2 }}{2}} \right) = \sqrt 2 ;y\left( 1 \right) = 1\).

Vậy \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} y = \sqrt 2 \) tại \(x = \frac{{\sqrt 2 }}{2}\).

Chọn A.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 92 trang 40 sách bài tập toán 12 - Cánh diều

    Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x - 2sin x) trên đoạn (left[ {0;pi } right]) lần lượt là: A. (M = pi ,m = frac{pi }{3} - sqrt 3 ). B. (M = pi ,m = 0). C. (M = pi ,m = frac{pi }{6} - 1). D. (M = pi ,m = frac{{2pi }}{3} - sqrt 3 ).

  • Giải bài 93 trang 41 sách bài tập toán 12 - Cánh diều

    Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x.ln {rm{x}}) trên đoạn (left[ {1;{e^2}} right]) bằng: A. (M = 0,m = - frac{1}{e}). B. (M = frac{1}{e},m = 0). C. (M = 2{{rm{e}}^2},m = 0). D. (M = 2{{rm{e}}^2},m = - frac{1}{e}).

  • Giải bài 94 trang 41 sách bài tập toán 12 - Cánh diều

    Đồ thị hàm số nào sau đây nhận đường thẳng (y = - 2) làm tiệm cận ngang? A. (y = frac{{2{rm{x}} - 1}}{{ - 1 + x}}). B. (y = frac{{ - x + 1}}{{2{rm{x}} - 1}}). C. (y = frac{{x + 1}}{{x + 2}}). D. (y = frac{{ - 2{rm{x + }}1}}{{x - 3}}).

  • Giải bài 95 trang 41 sách bài tập toán 12 - Cánh diều

    Tiệm cận xiên của đồ thị hàm số (y = frac{{3{{rm{x}}^2} + x - 2}}{{x - 2}}) là đường thẳng: A. (y = - 3{rm{x}} + 7). B. (y = 3{rm{x}} + 7). C. (y = 3{rm{x}} - 7). D. (y = - 3{rm{x}} - 7).

  • Giải bài 96 trang 41 sách bài tập toán 12 - Cánh diều

    Đường cong ở Hình 27 là đồ thị của hàm số: A. \(y = 2{{\rm{x}}^3} + 2\). B. \(y = {x^3} - {x^2} + 2\). C. \(y = - {x^3} + 3{\rm{x}} + 2\). D. \(y = {x^3} + x + 2\).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí