Giải bài 89 trang 40 sách bài tập toán 12 - Cánh diều


Cho hàm số \(y = \frac{{a{x^2} + b{\rm{x}} + c}}{{m{\rm{x}} + n}}\) (với \(a,m \ne 0\)) có đồ thị là đường cong như Hình 26. Giá trị cực đại của hàm số là: A. 0. B. ‒1. C. 2. D. 3.

Đề bài

Cho hàm số \(y = \frac{{a{x^2} + b{\rm{x}} + c}}{{m{\rm{x}} + n}}\) (với \(a,m \ne 0\)) có đồ thị là đường cong như Hình 26. Giá trị cực đại của hàm số là:

A. 0.

B. ‒1.

C. 2.

D. 3.

Phương pháp giải - Xem chi tiết

Dựa vào đồ thị hàm số xác định các cực trị của hàm số.

Lời giải chi tiết

Dựa vào đồ thị ta có: Hàm số đạt cực đại tại \(x = 2\). Khi đó giá trị cực tiểu bằng ‒1.

Chọn B.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 90 trang 40 sách bài tập toán 12 - Cánh diều

    Giá trị nhỏ nhất của hàm số (y = frac{{2{rm{x}} + 1}}{{1 - x}}) trên đoạn (left[ {2;3} right]) bằng: A. ‒5. B. ‒2. C. 0. D. 1.

  • Giải bài 91 trang 40 sách bài tập toán 12 - Cánh diều

    Giá trị lớn nhất của hàm số (y = x + sqrt {1 - {x^2}} ) bằng: A. (sqrt 2 ). B. (sqrt 5 ). C. 1. D. 2.

  • Giải bài 92 trang 40 sách bài tập toán 12 - Cánh diều

    Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x - 2sin x) trên đoạn (left[ {0;pi } right]) lần lượt là: A. (M = pi ,m = frac{pi }{3} - sqrt 3 ). B. (M = pi ,m = 0). C. (M = pi ,m = frac{pi }{6} - 1). D. (M = pi ,m = frac{{2pi }}{3} - sqrt 3 ).

  • Giải bài 93 trang 41 sách bài tập toán 12 - Cánh diều

    Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x.ln {rm{x}}) trên đoạn (left[ {1;{e^2}} right]) bằng: A. (M = 0,m = - frac{1}{e}). B. (M = frac{1}{e},m = 0). C. (M = 2{{rm{e}}^2},m = 0). D. (M = 2{{rm{e}}^2},m = - frac{1}{e}).

  • Giải bài 94 trang 41 sách bài tập toán 12 - Cánh diều

    Đồ thị hàm số nào sau đây nhận đường thẳng (y = - 2) làm tiệm cận ngang? A. (y = frac{{2{rm{x}} - 1}}{{ - 1 + x}}). B. (y = frac{{ - x + 1}}{{2{rm{x}} - 1}}). C. (y = frac{{x + 1}}{{x + 2}}). D. (y = frac{{ - 2{rm{x + }}1}}{{x - 3}}).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí