Giải bài 8 trang 26 sách bài tập toán 12 - Chân trời sáng tạo>
Cho (D) là hình phẳng giới hạn bởi đồ thị của hàm số (y = sqrt x ), trục hoành và đường thẳng (x = 4). Đường thẳng (x = aleft( {0 < a < 4} right)) chia (D) thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của (a).
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho \(D\) là hình phẳng giới hạn bởi đồ thị của hàm số \(y = \sqrt x \), trục hoành và đường thẳng \(x = 4\). Đường thẳng \(x = a\left( {0 < a < 4} \right)\) chia \(D\) thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của \(a\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).
Lời giải chi tiết
Diện tích phần bên trái: \({S_1} = \int\limits_0^a {\left| {\sqrt x } \right|dx} = \int\limits_0^a {{x^{\frac{1}{2}}}dx} = \left. {\frac{2}{3}{x^{\frac{3}{2}}}} \right|_0^a = \frac{2}{3}{a^{\frac{3}{2}}}\).
Diện tích hình phẳng \(D\): \({S_D} = \int\limits_0^4 {\left| {\sqrt x } \right|dx} = \int\limits_0^4 {{x^{\frac{1}{2}}}dx} = \left. {\frac{2}{3}{x^{\frac{3}{2}}}} \right|_0^4 = \frac{{16}}{3}\).
Đường thẳng \(x = a\left( {0 < a < 4} \right)\) chia \(D\) thành hai phần có diện tích bằng nhau nên ta có:
\({S_1} = \frac{1}{2}{S_D} \Leftrightarrow \frac{2}{3}{a^{\frac{3}{2}}} = \frac{1}{2}.\frac{{16}}{3} \Leftrightarrow {a^{\frac{3}{2}}} = 4 \Leftrightarrow {a^3} = 16 \Leftrightarrow a = 2\sqrt[3]{2}\).
- Giải bài 9 trang 26 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 10 trang 26 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 11 trang 26 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 12 trang 26 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 26 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo