Giải bài 8 trang 24 sách bài tập toán 12 - Chân trời sáng tạo


Chọn đáp án đúng. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {e^x} - 2\), trục hoành và hai đường thẳng \(x = 0,x = \ln 4\) là A. 1. B. 3. C. \(2\ln 2 - 1\). D. \(3 - 4\ln 2\).

Đề bài

Chọn đáp án đúng.

Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {e^x} - 2\), trục hoành và hai đường thẳng \(x = 0,x = \ln 4\) là

A. 1.

B. 3.

C. \(2\ln 2 - 1\).

D. \(3 - 4\ln 2\).

Phương pháp giải - Xem chi tiết

‒ Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).

Lời giải chi tiết

\(S = \int\limits_0^{\ln 4} {\left| {{e^x} - 2} \right|dx} \)

\({e^x} - 2 = 0 \Leftrightarrow x = \ln 2\)

\(\begin{array}{l}S = \int\limits_0^{\ln 4} {\left| {{e^x} - 2} \right|dx}  = \int\limits_0^{\ln 2} {\left| {{e^x} - 2} \right|dx}  + \int\limits_{\ln 2}^{\ln 4} {\left| {{e^x} - 2} \right|dx}  = \left| {\int\limits_0^{\ln 2} {\left( {{e^x} - 2} \right)dx} } \right| + \left| {\int\limits_{\ln 2}^{\ln 4} {\left( {{e^x} - 2} \right)dx} } \right|\\ = \left| {\left. {\left( {{e^x} - 2x} \right)} \right|_0^{\ln 2}} \right| + \left| {\left. {\left( {{e^x} - 2x} \right)} \right|_{\ln 2}^{\ln 4}} \right| = \left( {2\ln 2 - 1} \right) + \left( {2 - 2\ln 2} \right) = 1\end{array}\)

Chọn A.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí