Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo>
Tìm toạ độ tâm đối xứng (I) của đồ thị hàm số sau theo tham số (m): (y = fleft( x right) = left( {2 - m} right){x^3} - 3{x^2} + 2). Chứng tỏ khi (m) thay đổi, (I) luôn thuộc một parabol xác định.
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Tìm toạ độ tâm đối xứng \(I\) của đồ thị hàm số sau theo tham số \(m\):
\(y = f\left( x \right) = \left( {2 - m} \right){x^3} - 3{x^2} + 2\).
Chứng tỏ khi \(m\) thay đổi, \(I\) luôn thuộc một parabol xác định.
Phương pháp giải - Xem chi tiết
‒ Hoành độ tâm đối xứng là nghiệm của phương trình $y''=0$.
‒ Biểu diễn \({y_I}\) theo \({x_I}\).
Lời giải chi tiết
Để hàm số đã cho là hàm số bậc ba, ta cần có điều kiện: \(2 - m \ne 0\) hay \(m \ne 2\). (*)
\(y'=3\left( 2-m \right){{x}^{2}}-6x;y''=6\left( 2-m \right)x-6;y''=0\Leftrightarrow x=\frac{1}{2-m}\).
Vậy \({x_I} = \frac{1}{{2 - m}}\).
Tâm đối xứng \(I\) của đồ thị hàm số có tung độ:
\({y_I} = \left( {2 - m} \right).{\left( {\frac{1}{{2 - m}}} \right)^3} - 3.{\left( {\frac{1}{{2 - m}}} \right)^2} + 2 = 2 - \frac{2}{{{{\left( {2 - m} \right)}^2}}} = 2 - 2.{\left( {\frac{1}{{2 - m}}} \right)^2} = - 2x_I^2 + 2\).
Vậy \({y_I}\) là một hàm số bậc hai theo \({x_I}\).
Suy ra tâm đối xứng \(I\) của đồ thị hàm số đã cho luôn thuộc một parabol, đó là đồ thị hàm số bậc hai \(y = - 2{x^2} + 2\).
Mặt khác \({x_I} = \frac{1}{{2 - m}}\) nên \(m = 2 - \frac{1}{{{x_I}}}\).
Do \(m \ne 2\) nên \(2 - \frac{1}{{{x_I}}} \ne 2 \Leftrightarrow \frac{1}{{{x_I}}} \ne 0\) (luôn đúng với mọi \({x_I} \in \mathbb{R}\)).
Vậy khi \(m\) thay đổi, \(I\) luôn thuộc parabol \(y = - 2{x^2} + 2\).
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo