Bài 3. Phương trình mặt cầu - SBT Toán 12 Chân trời sáng tạo

Bình chọn:
4.9 trên 7 phiếu
Bài 1 trang 59 SBT toán 12 - Chân trời sáng tạo

Cho mặt cầu (left( S right)) có tâm (Ileft( {2; - 1;4} right)) và bán kính (R = 5). Các điểm (Aleft( {3;1;5} right),Bleft( { - 1;11;14} right),)(Cleft( {6;2;4} right)) nằm trong, nằm trên hay nằm ngoài mặt cầu (left( S right))?

Xem lời giải

Bài 2 trang 59 SBT toán 12 - Chân trời sáng tạo

Viết phương trình mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau: a) \(\left( S \right)\) có tâm \(I\left( {--5;7;6} \right)\) và bán kính \(R = 9\). b) \(\left( S \right)\) có tâm \(I\left( {0; - 3;0} \right)\) và đi qua điểm \(M\left( {4;0; - 2} \right)\). c) \(\left( S \right)\) có đường kính \(EF\) với \(E\left( {1;5;9} \right),F\left( {11;3;1} \right)\).

Xem lời giải

Bài 3 trang 59 SBT toán 12 - Chân trời sáng tạo

Xác định tâm và bán kính của mặt cầu có phương trình sau: a) (left( S right):{left( {x - 7} right)^2} + {left( {y - 3} right)^2} + {left( {z + 4} right)^2} = 49); b) (left( {S'} right):{x^2} + {left( {y + 1} right)^2} + {left( {z - 2} right)^2} = 11); c) (left( S'' right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25)

Xem lời giải

Bài 4 trang 60 SBT toán 12 - Chân trời sáng tạo

Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính mặt của cầu đó. a) (4{x^2} + {y^2} + {z^2} - 2x - 14y - 7z + 4 = 0); b) ({x^2} + {y^2} + {z^2} + 6x - 4y - 4z - 19 = 0); c) ({x^2} + {y^2} + {z^2} - 4x - 4y - 6z + 40 = 0).

Xem lời giải

Bài 5 trang 60 SBT toán 12 - Chân trời sáng tạo

Người ta muốn thiết kế một quả địa cầu trong không gian \(Oxyz\) bằng phần mềm 3D. Biết phương trình mặt cầu là \(\left( S \right):{\left( {x - 24} \right)^2} + {\left( {y - 24} \right)^2} + {\left( {z - 24} \right)^2} = 100\) (đơn vị cm) và phương trình đường thẳng trục xoay là \({\rm{d}}:\frac{{x - 24}}{1} = \frac{{y - 24}}{1} = \frac{{z - 24}}{{3,25}}\). a) Tìm toạ độ giao điểm của \(d\) và \(\left( S \right)\). b) Tính số đo góc giữa \(d\) và trục \(Oz\). Làm tròn kết quả đến hàng

Xem lời giải

Bài 6 trang 60 SBT toán 12 - Chân trời sáng tạo

Trong không gian \(Oxyz\) (đơn vị trên các trục toạ độ là mét), một ngọn hải đăng có bóng đèn đặt tại điểm \(I\left( {20;40;60} \right)\). a) Cho biết bán kính phủ sáng của đèn trên hải đăng là 3 km, viết phương trình mặt cầu biểu diễn ranh giới của vùng phủ sáng của hải đăng trong không gian. b) Một người đi biển đang ở vị trí \(M\left( {420;340;0} \right)\). Người đó có thể nhìn thấy được ánh sáng của hải đăng hay không? Giải thích.

Xem lời giải

Bài 7 trang 60 SBT toán 12 - Chân trời sáng tạo

Một khu vực đã được thiết lập một hệ toạ độ \(Oxyz\) (đơn vị trên các trục là mét). Một flycam đang phát sóng wifi bao phủ một vùng không gian bên trong mặt cầu \(\left( S \right):{\left( {x - 20} \right)^2} + {\left( {y - 30} \right)^2} + {\left( {z - 10} \right)^2} = 400\). Một người đang sử dụng máy tính tại điểm \(M\) nằm trên điểm giao của mặt cầu \(\left( S \right)\) và mặt đất \(\left( P \right):z = 0\). a) Xác định toạ độ tâm \(I\) và bán kính của mặt cầu \(\left( S \right)\). Tính kho

Xem lời giải