Giải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo>
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho hàm số (y = 2{x^3} - 5{x^2} - 24x - 18). a) Hàm số có hai cực trị. b) Hàm số đạt cực đại tại (x = - frac{4}{3}), giá trị cực đại là (frac{{10}}{{27}}). c) Hàm số đồng biến trong khoảng (left( {3; + infty } right)). d) Hàm số đồng biển trong khoảng (left( { - frac{4}{3};3} right)).
Đề bài
Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Cho hàm số \(y = 2{x^3} - 5{x^2} - 24x - 18\).
a) Hàm số có hai cực trị.
b) Hàm số đạt cực đại tại \(x = - \frac{4}{3}\), giá trị cực đại là \(\frac{{10}}{{27}}\).
c) Hàm số đồng biến trong khoảng \(\left( {3; + \infty } \right)\).
d) Hàm số đồng biển trong khoảng \(\left( { - \frac{4}{3};3} \right)\).
Phương pháp giải - Xem chi tiết
Các bước để xét tính đơn điệu và tìm cực trị của hàm số \(f\left( x \right)\):
Bước 1. Tìm tập xác định \(D\) của hàm số.
Bước 2. Tính đạo hàm \(f'\left( x \right)\) của hàm số. Tìm các điểm \({x_1},{x_2},...,{x_n} \in D\) mà tại đó đạo hàm \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.
Bước 3. Sắp xếp các điểm \({x_1},{x_2},...,{x_n}\) theo thứ tự tăng dần, xét dấu \(f'\left( x \right)\) và lập bảng biến thiên.
Bước 4. Nêu kết luận về các khoảng đồng biến, nghịch biến, cực trị của hàm số.
Lời giải chi tiết
Xét hàm số \(y = 2{x^3} - 5{x^2} - 24x - 18\).
Tập xác định: \(D = \mathbb{R}\).
Ta có \(y' = 6{x^2} - 10x - 24;y' = 0 \Leftrightarrow x = 3\) hoặc \({\rm{x}} = - \frac{4}{3}\).
Bảng biến thiên:
Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - \frac{4}{3}} \right)\) và \(\left( {3; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \frac{4}{3};3} \right)\).
Hàm số đạt cực đại tại $x=-\frac{4}{3},{{y}_{CĐ}}=\frac{10}{27}$; hàm số đạt cực tiểu tại \(x = 3,{y_{CT}} = - 81\).
a) Đ.
b) Đ.
c) Đ.
d) S.
- Giải bài 12 trang 35 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 13 trang 35 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 14 trang 35 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 1 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 2 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo