Giải bài 2 trang 25 sách bài tập toán 12 - Chân trời sáng tạo>
Tìm: a) (int {{{left( {3{rm{x}} - frac{1}{{{x^2}}}} right)}^2}dx} ); b) (int {left( {7{rm{x}}sqrt[3]{x} - frac{1}{{sqrt {{x^3}} }}} right)dx} left( {x > 0} right)); c) (int {{{left( {{3^{2{rm{x}}}} - 1} right)}^2}dx} ); d) (int {left( {2 - 3{{cos }^2}frac{x}{2}} right)dx} ).
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Tìm:
a) \(\int {{{\left( {3{\rm{x}} - \frac{1}{{{x^2}}}} \right)}^2}dx} \); b) \(\int {\left( {7{\rm{x}}\sqrt[3]{x} - \frac{1}{{\sqrt {{x^3}} }}} \right)dx} \left( {x > 0} \right)\);
c) \(\int {{{\left( {{3^{2{\rm{x}}}} - 1} \right)}^2}dx} \); d) \(\int {\left( {2 - 3{{\cos }^2}\frac{x}{2}} \right)dx} \).
Phương pháp giải - Xem chi tiết
Sử dụng các công thức:
• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
• \(\int {\frac{1}{x}dx} = \ln \left| x \right| + C\).
• \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\).
• \(\int {\cos xdx} = \sin x + C\).
Lời giải chi tiết
a)
\(\begin{array}{l}\int {{{\left( {3{\rm{x}} - \frac{1}{{{x^2}}}} \right)}^2}dx} = \int {\left( {9{{\rm{x}}^2} - \frac{6}{x} + \frac{1}{{{x^4}}}} \right)dx} = \int {\left( {9{{\rm{x}}^2} - 6.\frac{1}{x} + {x^{ - 4}}} \right)dx} \\ = 3{{\rm{x}}^3} - 6\ln \left| x \right| + \frac{{{x^{ - 3}}}}{{ - 3}} + C = 3{{\rm{x}}^3} - 6\ln \left| x \right| - \frac{1}{{3{{\rm{x}}^3}}} + C\end{array}\)
b) \(\int {\left( {7{\rm{x}}\sqrt[3]{x} - \frac{1}{{\sqrt {{x^3}} }}} \right)dx} = \int {\left( {7{{\rm{x}}^{\frac{4}{3}}} - {x^{ - \frac{3}{2}}}} \right)dx} = 7\frac{{{{\rm{x}}^{\frac{7}{3}}}}}{{\frac{7}{3}}} - \frac{{{x^{ - \frac{1}{2}}}}}{{ - \frac{1}{2}}} + C = 3{{\rm{x}}^2}\sqrt[3]{x} + \frac{2}{{\sqrt x }} + C\).
c)
\(\begin{array}{l}\int {{{\left( {{3^{2{\rm{x}}}} - 1} \right)}^2}dx} = \int {\left( {{3^{4{\rm{x}}}} - {{2.3}^{2{\rm{x}}}} + 1} \right)dx} = \int {\left( {{{81}^{\rm{x}}} - {{2.9}^{\rm{x}}} + 1} \right)dx} = \frac{{{{81}^{\rm{x}}}}}{{\ln 81}} - 2.\frac{{{9^{\rm{x}}}}}{{\ln 9}} + x + C\\ = \frac{{{3^{4{\rm{x}}}}}}{{4\ln 3}} - \frac{{{3^{{\rm{2x}}}}}}{{\ln 3}} + x + C\end{array}\)
d) \(\int {\left( {2 - 3{{\cos }^2}\frac{x}{2}} \right)dx} = \int {\left( {2 - 3.\frac{{1 + \cos {\rm{x}}}}{2}} \right)dx} = \int {\left( {\frac{1}{2} - \frac{3}{2}\cos {\rm{x}}} \right)dx} = \frac{1}{2}x - \frac{3}{2}\sin x + C\)
- Giải bài 3 trang 25 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 25 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 25 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 25 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 26 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo