Giải bài 6 trang 72 SGK Toán 10 tập 2 – Cánh diều>
Chứng minh khẳng định sau: Hai vectơ
Đề bài
Chứng minh khẳng định sau: Hai vectơ \(\overrightarrow u = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v \ne 0\) ) cùng phương khi và chỉ khi có một số thực k sao cho \({x_1}{\rm{ = }}k{x_2}\) và \({y_1} = {\rm{ }}k{y_2}\) .
Phương pháp giải - Xem chi tiết
Hai vectơ cùng phương thì tồn tại một số \(k\left( {k \in \mathbb{R}} \right)\) sao cho vectơ này bằng \(k\) lần vectơ kia.
Lời giải chi tiết
Để hai vectơ \(\overrightarrow u = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v \ne 0\) ) cùng phương thì phải tồn tại một số \(k\left( {k \in \mathbb{R}} \right)\) sao cho \(\overrightarrow u = k.\overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = k{x_2}\\{y_1} = k{y_2}\end{array} \right.\) ( ĐPCM)
- Giải bài 7 trang 72 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 5 trang 72 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 4 trang 72 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 2 trang 72 SGK Toán 10 tập 2 – Cánh diều
>> Xem thêm