
Đề bài
Trong mặt phẳng tọa độ Oxy, cho hai điểm A (1; 2), B(-4; 3). Gọi M (t; 0) là một điểm thuộc trục hoành.
a) Tính \(\overrightarrow {AM} .\overrightarrow {BM} \) theo t.
b) Tính t để \(\widehat {AMB} = {90^o}\)
Phương pháp giải - Xem chi tiết
+) Nếu vecto \(\overrightarrow {AM} (x;y)\) và \(\overrightarrow {BM} (a;b)\) thì \(\overrightarrow {AM} .\overrightarrow {BM} = xa + yb\)
+) \(\widehat {AMB} = {90^o} \Leftrightarrow AM \bot BM\)
Lời giải chi tiết
a)
Ta có: A (1; 2), B(-4; 3) và M (t; 0)
\(\begin{array}{l}
\Rightarrow \overrightarrow {AM} = (t - 1; - 2),\;\overrightarrow {BM} = (t + 4; - 3)\\
\Rightarrow \overrightarrow {AM} .\overrightarrow {BM} = (t - 1)(t + 4) + ( - 2)( - 3)\\
\quad \quad \quad \quad \quad \quad= {t^2} + 3t + 2.
\end{array}\)
b)
Để \(\widehat {AMB} = {90^o}\) hay \(AM \bot BM\) thì \(\overrightarrow {AM} .\overrightarrow {BM} = 0\)
\(\begin{array}{l} \Leftrightarrow {t^2} + 3t + 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = - 2\end{array} \right.\end{array}\)
Vậy t = -1 hoặc t = -2 thì \(\widehat {AMB} = {90^o}\)
Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A (-4; 1), B (2;4), C (2; -2) a) Giải tam giác b) Tìm tọa độ trực tâm H của tam giác ABC.
Chứng minh rằng với mọi tam giác ABC, ta có
Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có
Tìm điều kiện của u.v để: a) u.v = |u|.|v| b) u.v = -|u|.|v|
Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ a và b trong mỗi trường hợp sau: a) a = ( - 3;1), b = (2;6) b) a = (3;1), b = (2;4)
Cho hai vectơ cùng phương u=(x;y) và v=(kx;ky) Trong mặt phẳng tọa độ Oxy, cho hai vectơ không cùng phương u=(x;y) và v=(x';y'). Tích vô hướng và góc giữa hai vectơ u=(0; - 5), v= Cho ba vectơ u = (x1;y1), v=(x2;y2), w=x3;y3 Cho tam giác ABC với A(-1; 2), B(8; -1), C(8; 8). Gọi H là trực tâm của tam giác. Một lực F không đổi tác động vào một vật và điểm đặt của lực chuyển động thẳng từ A đến B.
Khi nào thì tích vô hướng của hai vectơ uv là một số dương? Là một số âm? Khi nào thì (u.v)^2 = u^2. v^2? Cho tam giác AB C có BC = a, CA = b, AB = c. Hãy tính (overrightarrow {AB} .overrightarrow {AC} ) theo a,b,c.
Trong hình 4.39, số đo góc BAC cũng được gọi là số đo góc giữa hai vectơ AB và AC. Khi nào thì góc giữa hai vectơ bằng 0, bằng 180? Cho tam giác đều ABC. Tính (AB,BC).
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: