Trắc nghiệm Bài 64: Luyện tập chung Toán 4 Cánh diều
Đề bài
Cho hình vẽ như bên dưới:
Phân số chỉ phần tô màu trong hình vẽ trên là:
A. \(\dfrac{7}{{15}}\)
B. \(\dfrac{8}{{15}}\)
C. \(\dfrac{7}{8}\)
D. \(\dfrac{8}{7}\)
Điền dấu thích hợp vào ô trống để được phép so sánh đúng:
$\frac{{42}}{{56}}$
$\frac{5}{7}$
Giá trị của biểu thức A = $\frac{{8 \times 2 \times 11}}{{7 \times 11 \times 24}}$ là:
-
A.
$\frac{2}{7}$
-
B.
$\frac{2}{{21}}$
-
C.
$\frac{2}{3}$
-
D.
$\frac{2}{{14}}$
Mạnh có một hộp bánh. Mạnh chia cho An $\frac{2}{5}$ số bánh, Mạnh chia cho Thảo
$\frac{3}{4}$ số bánh. Mạnh chia cho Trang $\frac{{13}}{{20}}$ số bánh. Hỏi Mạnh chia cho ai số bánh ít nhất?
-
A.
Thảo
-
B.
An
-
C.
Trang
-
D.
Mạnh chia cho các bạn là như nhau
Từ các số $5;{\rm{ 9}}\;$ ta có thể lập được bao nhiêu phân số có tử số và mẫu số là một trong các số đó (trong đó tử số phải khác mẫu số)?
A. \(1\) phân số
B. \(2\) phân số
C. \(3\) phân số
D. \(4\) phân số
Phân số nào sau đây khi rút gọn được phân số tối giản là \(\dfrac{5}{8}\) ?
A. \(\dfrac{{75}}{{115}}\)
B. \(\dfrac{{45}}{{72}}\)
C. \(\dfrac{8}{{21}}\)
D. \(\dfrac{{35}}{{45}}\)
Tìm phân số \(\dfrac{a}{b}\), biết phân số \(\dfrac{a}{b}\) là phân số tối giản sau khi rút gọn phân số \(\dfrac{{105}}{{135}}\).
A. \(\dfrac{a}{b} = \dfrac{{13}}{{15}}\)
B. \(\dfrac{a}{b} = \dfrac{{17}}{{27}}\)
C. \(\dfrac{a}{b} = \dfrac{7}{9}\)
D. \(\dfrac{a}{b} = \dfrac{5}{8}\)
Ngày thứ nhất An uống hết \(\dfrac{2}{3}\) lít sữa. Ngày thứ hai An uống hết \(\dfrac{3}{4}\) lít sữa. Hỏi trong hai ngày đó, ngày nào An uống nhiều sữa hơn?
A. Ngày thứ nhất
B. Ngày thứ hai
Điền số thích hợp vào ô trống:
Với ba số tự nhiên \(4\,\,;\,\,7\) và \(9\) ta viết được
phân số nhỏ hơn \(1\).
Mẹ đi chợ mua về \(2\) chục quả cam, mẹ đem biếu bà hết \(\dfrac{1}{4}\) số cam đó, biếu bác Lan \(4\) quả cam.
Quy đồng mẫu số phân số \(\dfrac{7}{8}\) và \(\dfrac{5}{6}\) ta được hai phân số lần lượt là:
Lời giải và đáp án
Cho hình vẽ như bên dưới:
Phân số chỉ phần tô màu trong hình vẽ trên là:
A. \(\dfrac{7}{{15}}\)
B. \(\dfrac{8}{{15}}\)
C. \(\dfrac{7}{8}\)
D. \(\dfrac{8}{7}\)
A. \(\dfrac{7}{{15}}\)
Quan sát hình vẽ, tìm ô vuông được tô màu và tổng số ô vuông. Phân số chỉ phần tô màu trong hình vẽ đã cho có tử số là số ô vuông được tô màu và mẫu số là tổng số ô vuông.
Quan sát hình vẽ ta thấy có tất cả \(15\) ô vuông, trong đó có \(7\) ô vuông được tô màu.
Vậy phân số chỉ số ô vuông đã tô màu trong hình là \(\dfrac{7}{{15}}\).
Áp dụng tính chất cơ bản của phân số: Nếu nhân cả tử số và mẫu số của một phân số với cùng một số tự nhiên khác \(0\) thì được một phân số bằng phân số đã cho.
Ta thấy tử số của phân số \(\dfrac{4}{7}\) nhân với \(3\) thì mẫu số ta cũng nhân với \(3\), khi đó ta được phân số mới bằng phân số \(\dfrac{4}{7}\).
Ta có: \(\dfrac{4}{7} = \dfrac{{4 \times 3}}{{7 \times 3}} = \dfrac{{12}}{{21}}\).
Điền dấu thích hợp vào ô trống để được phép so sánh đúng:
$\frac{{42}}{{56}}$
$\frac{5}{7}$
$\frac{{42}}{{56}}$
$\frac{5}{7}$
Muốn so sánh hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số đó rồi so sánh hai phân số cùng mẫu số.
$\frac{5}{7} = \frac{{5 \times 8}}{{7 \times 8}} = \frac{{40}}{{56}}$
Vậy $\frac{{42}}{{56}} > \frac{5}{7}$
Giá trị của biểu thức A = $\frac{{8 \times 2 \times 11}}{{7 \times 11 \times 24}}$ là:
-
A.
$\frac{2}{7}$
-
B.
$\frac{2}{{21}}$
-
C.
$\frac{2}{3}$
-
D.
$\frac{2}{{14}}$
Đáp án : B
Chia nhẩm cả tử số và mẫu số cho các thừa số chung.
$\frac{{8 \times 2 \times 11}}{{7 \times 11 \times 24}} = \frac{{8 \times 2 \times 11}}{{7 \times 11 \times 8 \times 3}} = \frac{2}{{21}}$
Mạnh có một hộp bánh. Mạnh chia cho An $\frac{2}{5}$ số bánh, Mạnh chia cho Thảo
$\frac{3}{4}$ số bánh. Mạnh chia cho Trang $\frac{{13}}{{20}}$ số bánh. Hỏi Mạnh chia cho ai số bánh ít nhất?
-
A.
Thảo
-
B.
An
-
C.
Trang
-
D.
Mạnh chia cho các bạn là như nhau
Đáp án : B
- Quy đồng mẫu số các phân số rồi so sánh các phân số ở đề bài.
- Phân số bé nhất ứng với phần bánh được chia ít nhất
Ta có $\frac{2}{5} = \frac{8}{{20}}$ ; $\frac{3}{4} = \frac{{15}}{{20}}$
Mà $\frac{8}{{20}} < \frac{{13}}{{20}} < \frac{{15}}{{20}}$ nên $\frac{2}{5} < \frac{{13}}{{20}} < \frac{3}{4}$
Vậy Mạnh chia cho An số bánh ít nhất.
Từ các số $5;{\rm{ 9}}\;$ ta có thể lập được bao nhiêu phân số có tử số và mẫu số là một trong các số đó (trong đó tử số phải khác mẫu số)?
A. \(1\) phân số
B. \(2\) phân số
C. \(3\) phân số
D. \(4\) phân số
B. \(2\) phân số
- Lập các phân số được lập từ các số $5;{\rm{ 9}}$ rồi tìm các phân số có tử số khác mẫu số.
Từ các số $5;\,{\rm{ 9}}$ ta có thể lập được các phân số có tử số và mẫu số là một trong các số đã cho đó là:
\(\dfrac{5}{5}\,\,;\,\,\,\dfrac{5}{9}\,;\,\,\,\dfrac{9}{5}\,;\,\,\,\dfrac{9}{9}\)
Ta thấy trong các phân số vừa lập có \(2\) phân số có tử số khác mẫu số đó là: \(\,\dfrac{5}{9}\,;\,\,\dfrac{9}{5}\,\).
Vậy từ các số $5;\,{\rm{ 9}}$ ta có thể lập được \(2\) phân số có tử số và mẫu số là một trong các số đó (trong đó tử số phải khác mẫu số).
Phân số nào sau đây khi rút gọn được phân số tối giản là \(\dfrac{5}{8}\) ?
A. \(\dfrac{{75}}{{115}}\)
B. \(\dfrac{{45}}{{72}}\)
C. \(\dfrac{8}{{21}}\)
D. \(\dfrac{{35}}{{45}}\)
B. \(\dfrac{{45}}{{72}}\)
Khi rút gọn phân số có thể làm như sau:
- Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn \(1\).
- Chia tử số và mẫu số cho số đó.
Cứ làm như thế cho đến khi nhận được phân số tối giản.
Phân số \(\dfrac{8}{{21}}\) là phân số tối giản nên không thể rút gọn được nữa.
Ta có:
\(\dfrac{{75}}{{115}} = \dfrac{{75:5}}{{115:5}} = \dfrac{{15}}{{23}}\,\,\,\, \,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\,\,\,\dfrac{{45}}{{72}} = \dfrac{{45:9}}{{72:9}} = \dfrac{5}{8}\,\,\,\, \,;\)
\(\dfrac{{35}}{{45}} = \dfrac{{35:5}}{{45:5}} = \dfrac{7}{8}\).
Vậy khi rút gọn phân số \(\dfrac{{45}}{{72}}\) ta được phân số tối giản là \(\dfrac{5}{8}\).
Tìm phân số \(\dfrac{a}{b}\), biết phân số \(\dfrac{a}{b}\) là phân số tối giản sau khi rút gọn phân số \(\dfrac{{105}}{{135}}\).
A. \(\dfrac{a}{b} = \dfrac{{13}}{{15}}\)
B. \(\dfrac{a}{b} = \dfrac{{17}}{{27}}\)
C. \(\dfrac{a}{b} = \dfrac{7}{9}\)
D. \(\dfrac{a}{b} = \dfrac{5}{8}\)
C. \(\dfrac{a}{b} = \dfrac{7}{9}\)
Khi rút gọn phân số có thể làm như sau:
- Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn \(1\).
- Chia tử số và mẫu số cho số đó.
Cứ làm như thế cho đến khi nhận được phân số tối giản.
Rút gọn phân số \(\dfrac{{105}}{{135}}\) ta có:
\(\dfrac{{105}}{{135}} = \dfrac{{105:5}}{{135:5}} = \dfrac{{21}}{{27}} = \dfrac{{21:3}}{{27:3}} = \dfrac{7}{9}\)
Ta thấy \(7\) và \(9\) không cùng chia hết cho số tự nhiên nào lớn hơn \(1\) nên \(\dfrac{7}{9}\) là phân số tối giản.
Vậy \(\dfrac{a}{b} = \dfrac{7}{9}\).
Ngày thứ nhất An uống hết \(\dfrac{2}{3}\) lít sữa. Ngày thứ hai An uống hết \(\dfrac{3}{4}\) lít sữa. Hỏi trong hai ngày đó, ngày nào An uống nhiều sữa hơn?
A. Ngày thứ nhất
B. Ngày thứ hai
B. Ngày thứ hai
- So sánh hai phân số \(\dfrac{2}{3}\) và \(\dfrac{3}{4}\) bằng cách quy đồng mẫu số rồi so sánh hai phân số sau khi quy đồng.
Để biết ngày nào An uống nhiều sữa hơn ta sẽ so sánh hai phân số \(\dfrac{2}{3}\) và \(\dfrac{3}{4}\).
Quy đồng mẫu số hai phân số ta có:
\(\dfrac{2}{3} = \dfrac{{2 \times 4}}{{3 \times 4}} = \dfrac{8}{{12}} \);
\( \dfrac{3}{4} = \dfrac{{3 \times 3}}{{4 \times 3}} = \dfrac{9}{{12}}\)
Vì \(8 < 9\) nên \(\dfrac{8}{{12}} < \dfrac{9}{{12}}\).
Do đó: \(\dfrac{2}{3} < \dfrac{3}{4}\).
Vậy ngày thứ hai An uống nhiều sữa hơn.
Điền số thích hợp vào ô trống:
Với ba số tự nhiên \(4\,\,;\,\,7\) và \(9\) ta viết được
phân số nhỏ hơn \(1\).
Với ba số tự nhiên \(4\,\,;\,\,7\) và \(9\) ta viết được
phân số nhỏ hơn \(1\).
Phân số nhỏ hơn \(1\) là các phân số có tử số nhỏ hơn mẫu số.
Ta sẽ lập các phân số có tử số nhỏ hơn mẫu số từ các số đã cho.
Các phân số nhỏ hơn 1 là các phân số có tử số nhỏ hơn mẫu số.
Trong các số đã cho ta thấy: \(4 < 7 < 9\).
Vậy từ các số đã cho ta có thể lập được các phân số có tử số nhỏ hơn mẫu số như sau:
\(\dfrac{4}{7}\,\,\,;\,\,\,\dfrac{4}{9}\,\,\,;\,\,\,\dfrac{7}{9}\)
Vậy với ba số tự nhiên \(4\,;\,\,7\) và \(9\) ta viết được \(3\) phân số nhỏ hơn \(1\).
Đáp án đúng điền vào ô trống là \(3\).
Mẹ đi chợ mua về \(2\) chục quả cam, mẹ đem biếu bà hết \(\dfrac{1}{4}\) số cam đó, biếu bác Lan \(4\) quả cam.
- Đổi \(2\) chục quả cam $ = {\rm{ 20}}$ quả cam.
- Tìm số quả cam mẹ biếu bà tức là ta tìm \(\dfrac{1}{4}\) của \(20\), hay ta lấy \(20\) chia cho \(4\).
- Tìm số cam mẹ biếu bà và bác Lan.
- Tìm số cam còn lại ta lấy tổng số quả cam trừ đi số cam đem đi biếu.
- Viết phân số chỉ số quả cam còn lại có tử số là số quả cam còn lại, mẫu số là tổng số quả cam ban đầu mẹ mua về.
Đổi : \(2\) chục quả cam $ = {\rm{ 2}}0$ quả cam.
Mẹ đã biếu bà số quả cam là:
$20:4 = 5$ (quả cam)
Số quả cam mẹ đã biếu bà và bác Lan là
$5 + 4 = 9$ (quả cam)
Số quả cam còn lại là:
$20 - 9 = 11$ (quả cam)
Vậy phân số chỉ số quả cam còn lại là \(\dfrac{{11}}{{20}}\).
Đáp án đúng điền vào ô trống lần lượt từ trên xuống dưới là \(11\,;\,\,20\).
Quy đồng mẫu số phân số \(\dfrac{7}{8}\) và \(\dfrac{5}{6}\) ta được hai phân số lần lượt là:
+) Chọn mẫu số chung là \(24\).
+) \(24:8 = 3\) nên ta quy đồng phân số \(\dfrac{7}{8}\) thành phân số có mẫu số là \(24\) bằng cách nhân cả tử số và mẫu số với \(3.\)
+) \(24:6 = 4\) nên ta quy đồng phân số \(\dfrac{5}{6}\) thành phân số có mẫu số là \(24\) bằng cách nhân cả tử số và mẫu số với \(4.\)
Chọn mẫu số chung là \(24\).
Vì \(24:8 = 3\) nên ta quy đồng mẫu số phân số \(\dfrac{7}{8}\) như sau:
\(\dfrac{7}{8} = \dfrac{{7 \times 3}}{{ 8\times 3}} = \dfrac{{21}}{{24}}\)
Vì \(24:6 = 4\) nên ta quy đồng mẫu số phân số \(\dfrac{5}{6}\) như sau:
\(\dfrac{5}{6} = \dfrac{{5 \times 4}}{{6 \times 4}} = \dfrac{{20}}{{24}}\)
Vậy quy đồng mẫu số phân số \(\dfrac{7}{8}\) và \(\dfrac{5}{6}\) ta được hai phân số lần lượt là \(\dfrac{{21}}{{24}}\) và \(\dfrac{{20}}{{24}}\).
Luyện tập và củng cố kiến thức Bài 65: Hình bình hành Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 66: Hình thoi Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 67: Mét vuông Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 68: Đề-xi-mét vuông Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 69: Mi-li-mét vuông Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 70: Luyện tập chung Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 71: Em ôn lại những gì đã học Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 62: So sánh hai phân số khác mẫu số Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 61: So sánh hai phân số cùng mẫu số Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 60: Quy đồng mẫu số các phân số Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 59: Rút gọn phân số Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 58: Tính chất cơ bản của phân số Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 56: Luyện tập Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 55: Phân số và phép chia số tự nhiên Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 54: Khái niệm phân số (tiếp theo) Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 53: Khái niệm phân số Toán 4 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài 11: Luyện tập Toán 4 Cánh diều
- Trắc nghiệm Bài 8: Luyện tập và xác suất Toán 4 Cánh diều
- Trắc nghiệm Bài 3: Ôn tập về một số yếu tố thống kê và xác suất Toán 4 Cánh diều
- Trắc nghiệm Bài 2: Ôn tập về hình học và đo lường Toán 4 Cánh diều
- Trắc nghiệm Bài 96: Ôn tập chung Toán 4 Cánh diều