Lý thuyết Tổng và hiệu của hai vecto - SGK Toán 10 Cánh diều >
A. Lý thuyết 1. Tổng của hai vecto a) Định nghĩa
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
A. Lý thuyết
1. Tổng của hai vecto
a) Định nghĩa
Với ba điểm bất kì A, B, C, vecto \(\overrightarrow {AC} \) được gọi là tổng của hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \), kí hiệu là \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {BC} \). |
Phép lấy tổng của hai vecto còn được gọi là phép cộng vecto.
b) Quy tắc hình bình hành
Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \). |
c) Tính chất
Với ba vecto \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) tùy ý ta có: - Tính chất giao hoán: \(\overrightarrow a + \overrightarrow b = \overrightarrow b + \overrightarrow a \) - Tính chất kết hợp: \(\left( {\overrightarrow a + \overrightarrow b } \right) + \overrightarrow c = \overrightarrow a + \left( {\overrightarrow b + \overrightarrow c } \right)\) - Tính chất của vecto-không: \(\overrightarrow a + \overrightarrow 0 = \overrightarrow a \) |
2. Hiệu của hai vecto
a) Hai vecto đối nhau
Vecto có cùng độ dài và ngược hướng với vecto \(\overrightarrow a \) được gọi là vecto đối của vecto \(\overrightarrow a \), kí hiệu là \( - \overrightarrow a \). Hai vecto \(\overrightarrow a \) và \( - \overrightarrow a \) được gọi là hai vecto đối nhau. |
Quy ước: Vecto đối của vecto \(\overrightarrow 0 \) là vecto \(\overrightarrow 0 \).
Nhận xét:
+) \(\overrightarrow a + ( - \overrightarrow a ) = ( - \overrightarrow a ) + \overrightarrow a \).
+) Hai vecto \(\overrightarrow a \), \(\overrightarrow b \) là hai vecto đối nhau khi và chỉ khi \(\overrightarrow a + \overrightarrow b = \overrightarrow 0 \).
+) Với hai điểm A, B, ta có: \(\overrightarrow {AB} + \overrightarrow {BA} = \overrightarrow 0 \).
Cho hai điểm A, B. Khi đó, hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {BA} \) là hai vecto đối nhau, tức là \(\overrightarrow {BA} = - \overrightarrow {AB} \). |
Chú ý:
+) I là trung điểm của đoạn thẳng AB khi và chỉ khi \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \). +) G là trọng tâm tam giác ABC khi và chỉ khi \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \). |
b) Hiệu của hai vecto
Hiệu của vecto \(\overrightarrow a \) và vecto \(\overrightarrow b \) là tổng của vecto \(\overrightarrow a \) và vecto đối của vecto \(\overrightarrow b \), kí hiệu là \(\overrightarrow a - \overrightarrow b \). |
Phép lấy hiệu của hai vecto được gọi là phép trừ vecto.
Nhận xét: Với ba điểm A, B, O bất kì, ta có: \(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \).
B. Bài tập
Bài 1: Cho tam giác ABC có trung tuyến AM. Chứng minh \(\overrightarrow {AB} + \overrightarrow {MC} = \overrightarrow {AM} \).
Giải:
Vì \(\overrightarrow {MC} = \overrightarrow {BM} \) nên \(\overrightarrow {AB} + \overrightarrow {MC} = \overrightarrow {AB} + \overrightarrow {BM} = \overrightarrow {AM} \).
Bài 2: Cho hình chữ nhật ABCD. Chứng minh \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {BA} + \overrightarrow {BC} } \right|\).
Giải:
Theo quy tắc hình bình hành, ta có:
\(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \), \(\overrightarrow {BA} + \overrightarrow {BC} = \overrightarrow {BD} \).
Suy ra \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC\), \(\left| {\overrightarrow {BA} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {BD} } \right| = BD\).
Do AC = BD nên \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {BA} + \overrightarrow {BC} } \right|\).
Bài 3: Cho bốn điểm A, B, C, D. Chứng minh \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} = \overrightarrow {AD} \).
Giải:
Ta có \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} \)
\( = \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} \) (tính chất giao hoán)
\( = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \overrightarrow {CD} \) (tính chất kết hợp)
\( = \overrightarrow {AC} + \overrightarrow {CD} \) (quy tắc ba điểm)
\( = \overrightarrow {AD} \) (quy tắc ba điểm).
Bài 4: Cho bốn điểm bất kì A, B, C, D. Chứng minh \(\overrightarrow {AB} - \overrightarrow {AD} + \overrightarrow {CD} - \overrightarrow {CB} = \overrightarrow 0 \).
Giải:
Ta có \(\overrightarrow {AB} - \overrightarrow {AD} + \overrightarrow {CD} - \overrightarrow {CB} = \left( {\overrightarrow {AB} - \overrightarrow {AD} } \right) + \left( {\overrightarrow {CD} - \overrightarrow {CB} } \right) = \overrightarrow {DB} + \overrightarrow {BD} = \overrightarrow {DD} = \overrightarrow 0 \).


- Giải mục I trang 83, 84, 85 SGK Toán 10 tập 1 - Cánh diều
- Giải mục II trang 85, 86 SGK Toán 10 tập 1 - Cánh diều
- Giải bài 1 trang 87 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 2 trang 87 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 3 trang 87 SGK Toán 10 tập 1 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều