Giải mục 4 trang 92, 93 SGK Toán 10 tập 1 - Chân trời sáng tạo>
a) Cho điểm M là trung điểm của đoạn thẳng AB. b) Cho điểm G là trọng tâm của tam giác ABC có trung tuyến AI. Lấy D là điểm đối xứng với G qua I. Ta có BGCD là hình bình hành và G là trung điểm của đoạn thẳng AD. Cho hình bình hành ABCD có tâm O. Tìm ba điểm M, N, P thỏa mãn:
HĐ Khám phá 4
a) Cho điểm M là trung điểm của đoạn thẳng AB. Ta đã biết \(\overrightarrow {MB} = - \overrightarrow {MA} = \overrightarrow {AM} .\) Hoàn thành phép cộng vectơ sau: \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {MA} + \overrightarrow {AM} = \overrightarrow {MM} = ?\)
b) Cho điểm G là trọng tâm của tam giác ABC có trung tuyến AI. Lấy D là điểm đối xứng với G qua I. Ta có BGCD là hình bình hành và G là trung điểm của đoạn thẳng AD. Với lưu ý rằng \(\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GD} \) và \(\overrightarrow {GA} = \overrightarrow {DG} \), hoàn thành các phép cộng vectơ sau:
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GA} + \overrightarrow {GD} = \overrightarrow {{\rm{DD}}} = ?\)
Phương pháp giải:
a) Thay thế các vectơ bằng nhau \(\overrightarrow {MB} = - \overrightarrow {MA} = \overrightarrow {AM} .\)
b) Bước 1: Áp dụng quy tắc hình bình hành trên BGCD
Bước 2: Áp dụng tính chất trung điểm vừa tìm được ở câu a) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \)
(với M là trung điểm của AB)
Lời giải chi tiết:
a) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {MA} + \overrightarrow {AM} = \overrightarrow {MM} = \overrightarrow 0 \) (vì vectơ \(\overrightarrow {MB} = - \overrightarrow {MA} = \overrightarrow {AM} .\))
b) Xét hình bình hành BGCD ta có: \(\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GD} \)
\( \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GA} + \overrightarrow {GD} = \overrightarrow {DG} + \overrightarrow {GD} = \overrightarrow {{\rm{DD}}} = \overrightarrow 0 \)
(vì \(\overrightarrow {GA} = - \overrightarrow {GD} = \overrightarrow {DG} \))
Thực hành 5
Cho hình bình hành ABCD có tâm O. Tìm ba điểm M, N, P thỏa mãn:
a) \(\overrightarrow {MA} + \overrightarrow {MD} + \overrightarrow {MB} = \overrightarrow 0 \)
b) \(\overrightarrow {ND} + \overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \)
c) \(\overrightarrow {PM} + \overrightarrow {PN} = \overrightarrow 0 \)
Phương pháp
a) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)(với G là trọng tâm của tam giác ABC)
b) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
c) Sử dụng tính chất trung điểm \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \)(với M là trung điểm của AB)
Phương pháp giải:
a) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)(với G là trọng tâm của tam giác ABC)
b) Sử dụng tính chất trọng tâm của tam giác \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
c) Sử dụng tính chất trung điểm \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \)(với M là trung điểm của AB)
Lời giải chi tiết:
a) Áp dụng tính chất trọng tâm ta có: \(\overrightarrow {MA} + \overrightarrow {MD} + \overrightarrow {MB} = \overrightarrow 0 \)
Suy ra M là trọng tâm của tam giác ADB
Vậy M nằm trên đoạn thẳng AO sao cho \(AM = \frac{2}{3}AO\)
b) Tiếp tục áp dụng tính chất trọng tâm \(\overrightarrow {ND} + \overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \)
Suy ra N là trọng tâm của tam giác BCD
Vậy N nằm trên đoạn thẳng OD sao cho \(ON = \frac{1}{3}OD\)
c) Áp dụng tính chất trung điểm ta có: \(\overrightarrow {PM} + \overrightarrow {PN} = \overrightarrow 0 \)
Suy ra P là trung điểm của đoạn thẳng MN
Vậy điểm P trùng với điểm O
- Giải bài 1 trang 93 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 2 trang 93 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 93 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 4 trang 93 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 5 trang 93 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải Hoạt động 3 trang 96 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 94 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 1 trang 92, 93 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 90 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 89 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 96 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 94 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 1 trang 92, 93 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 90 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 89 SGK Toán 10 tập 2 - Chân trời sáng tạo