Giải mục 3 trang 45, 46, 47 SGK Toán 10 tập 1 - Chân trời sáng tạo
Quan sát đồ thị hàm số y = f(x) = {x^2} rồi so sánh f(x1) và f(x2) (với x1 < x2) trong từng trường hợp sau: a) Tìm khoảng đồng biến và nghịch biến của hàm số có đồ thị sau:
HĐ Khám phá 3
Quan sát đồ thị hàm số y=f(x)=x2 rồi so sánh f(x1) và f(x2) (với x1<x2) trong từng trường hợp sau:
Phương pháp giải:
Trên tia Oy, giá trị nào gần gốc tọa độ hơn thì nhỏ hơn.
Lời giải chi tiết:
a) f(x1)>f(x2)
b) f(x1)<f(x2)
Thực hành 4
a) Tìm khoảng đồng biến và nghịch biến của hàm số có đồ thị sau:
b) Xét tính đồng biến, nghịch biến của hàm số y=f(x)=5x2 trên khoảng (2; 5).
Phương pháp giải:
a) Quan sát đồ thị trên các khoảng (-3; 1), (1;3), (3;7)
Khi hàm số đồng biến trên khoảng (a; b) thì đồ thị của nó có dạng đi lên từ trái sang phải.
Khi hàm số nghịch biến trên khoảng (a; b) thì đồ thị của nó có dạng đi xuống từ trái sang phải.
b)
Bước 1: Lấy x1,x2∈(2;5) là hai số tùy ý sao cho x1<x2.
Bước 2: So sánh f(x1)=5x12 và f(x2)=5x22
Bước 3: Kết luận tính đồng biến, nghịch biến
+ Nếu f(x1)<f(x2) thì hàm số đồng biến trên khoảng (2; 5)
+ Nếu f(x1)>f(x2) thì hàm số nghịch biến trên khoảng (2; 5)
Lời giải chi tiết:
a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]
+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).
+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).
+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).
b) Xét hàm số y=5x2 trên khoảng (2; 5).
Lấy x1,x2∈(2;5) là hai số tùy ý sao cho x1<x2.
Do x1,x2∈(2;5) và x1<x2 nên 0<x1<x2, suy ra x12<x22 hay 5x12<5x22
Từ đây suy ra f(x1)<f(x2)
Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).


- Giải bài 1 trang 47 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 2 trang 47 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 47 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 4 trang 47 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 5 trang 48 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo