Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài 27. Thực hành tính xác suất theo định nghĩa cổ điển..
Giải bài 9.8 trang 86 SGK Toán 10 – Kết nối tri thức>
Một chiếc hộp đựng 6 viên bị trắng, 4 viên bị đỏ và 2 viên bị đen. Chọn ngẫu nhiên ra 6 viên bị. Tính xác suất để trong 6 viên bị đó có 3 viên bi trắng, 2 viên bị đỏ và 1 viên bị đen.
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Một chiếc hộp đựng 6 viên bị trắng, 4 viên bị đỏ và 2 viên bị đen. Chọn ngẫu nhiên ra 6 viên bị. Tính xác suất để trong 6 viên bị đó có 3 viên bi trắng, 2 viên bị đỏ và 1 viên bị đen.
Phương pháp giải - Xem chi tiết
\(n\left( \Omega \right)\)là số cách chọn 6 phần tử từ tập 12 phần tử. Gọi E là biến cố đang xét. Tính \(n\left( E \right)\) bằng cách: Tính số cách chọn 3 viên bi trắng từ 6 viên bi trắng; 2 viên bi đỏ từ 4 viên bi đỏ và 1 viên bi đen từ 2 viên bi đen rồi dùng quy tắc nhân.
Lời giải chi tiết
Ta có \(n\left( \Omega \right) = C_{12}^6 = 924\). Gọi E là biến cố: “Trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen”. Có \(C_6^3 = 20\) cách chọn 3 viên bi trắng, có \(C_4^2 = 6\) cách chọn 2 viên bi đỏ, có \(2\) cách chọn 1 viên bi đen.
Theo quy tắc nhân, ta có: \(n\left( E \right) = 20.6.2 = 240\). Vậy \(P\left( E \right) = \frac{{240}}{{924}} = \frac{{20}}{{77}}\).
- Giải bài 9.9 trang 86 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.10 trang 87 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.11 trang 87 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.12 trang 87 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.7 trang 86 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




