Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài 27. Thực hành tính xác suất theo định nghĩa cổ điển..
Giải bài 9.7 trang 86 SGK Toán 10 – Kết nối tri thức>
Một hộp đựng các tấm thẻ đánh số 10, 11,...; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ.
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Một hộp đựng các tấm thẻ đánh số 10, 11,...; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ.
Tính xác suất của các biến cố sau:
a) C: “Cả hai thẻ rút được đều mang số lẻ”;
b) D: “Cả hai thẻ rút được đều mang số chẵn”.
Phương pháp giải - Xem chi tiết
\(n\left( \Omega \right)\) là số cách chọn 2 phần tử từ tập \(\left\{ {10;11;...;20} \right\}\). Suy ra \(n\left( C \right)\) là số cách chọn 2 phần tử từ tập \(\left\{ {11;13;...;19} \right\}\) và \(n\left( D \right)\) là số cách chọn 2 phần tử từ tập \(\left\{ {10;12;...;20} \right\}\).
Lời giải chi tiết
Ta có \(n\left( \Omega \right) = C_{11}^2 = 55\).
a) Có 5 số lẻ là \(\left\{ {11;13;15;17;19} \right\}\) nên \(n\left( C \right) = C_5^2 = 10\). Vậy \(P\left( C \right) = \frac{{10}}{{55}} = \frac{2}{{11}}\).
b) Có 6 số chẵn là \(\left\{ {10;12;14;16;18;20} \right\}\) nên \(n\left( D \right) = C_6^2 = 15\). Vậy \(P\left( D \right) = \frac{{15}}{{55}} = \frac{3}{{11}}\).
- Giải bài 9.8 trang 86 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.9 trang 86 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.10 trang 87 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.11 trang 87 SGK Toán 10 – Kết nối tri thức
- Giải bài 9.12 trang 87 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




