Giải bài 9 trang 79 SGK Toán 10 tập 1 – Chân trời sáng tạo


Hai chiếc tàu thủy P và Q cách nhau 300m và thẳng hàng với chân B của tháp hải đăng AB ở trên bờ biển (Hình 2). Từ P và Q, người ta nhìn thấy tháp hải đăng AB dưới các góc

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Hai chiếc tàu thủy P và Q cách nhau 300m và thẳng hàng với chân B của tháp hải đăng AB ở trên bờ biển (Hình 2). Từ P và Q, người ta nhìn thấy tháp hải đăng AB dưới các  góc \(\widehat {BPA} = {35^o}\) và \(\widehat {BQA} = {48^o}.\) Tính chiều cao của tháp hải đăng đó.

Phương pháp giải - Xem chi tiết

Bước 1: Tính AB theo QB, dựa vào tan góc P và Q.

Bước 2: Lập phương trình, tìm QB.

Bước 3: Tính AB: \(AB = QB.\tan {48^ \circ }\)

Lời giải chi tiết

Xét tam giác APB và AQB, ta có:

\(\tan {35^ \circ } = \frac{{AB}}{{PB}} = \frac{{AB}}{{300 + QB}}\) và \(\tan {48^ \circ } = \frac{{AB}}{{QB}}\)

\(\begin{array}{l} \Rightarrow AB = \tan {35^ \circ }.\left( {300 + QB} \right) = \tan {48^ \circ }.QB\\ \Leftrightarrow \tan {35^ \circ }.300 + \tan {35^ \circ }.QB = \tan {48^ \circ }.QB\\ \Leftrightarrow \tan {35^ \circ }.300 = \left( {\tan {{48}^ \circ } - \tan {{35}^ \circ }} \right).QB\\ \Leftrightarrow QB = \frac{{\tan {{35}^ \circ }.300}}{{\tan {{48}^ \circ } - \tan {{35}^ \circ }}}\end{array}\)

Mà \(AB = \tan {48^ \circ }.QB\)

\( \Rightarrow AB = \tan {48^ \circ }.\frac{{\tan {{35}^ \circ }.300}}{{\tan {{48}^ \circ } - \tan {{35}^ \circ }}} \approx 568,5\;(m)\)

Vậy tháp hải đăng cao khoảng 568,5 m.


Bình chọn:
4.3 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí