Giải bài 4 trang 79 SGK Toán 10 tập 1 – Chân trời sáng tạo


Cho tam giác ABC có A = 120,b = 8,c = 5. Tính: a) Cạnh a và các góc B, C b) Diện tích tam giác ABC c) Bán kính đường tròn ngoại tiếp và đường cao AH của tam giác.

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác ABC có \(\widehat A = {120^ \circ },b = 8,c = 5.\) Tính:

LG a

a) Cạnh a và các góc \(\widehat B,\widehat C.\)

Phương pháp giải:

+) Tính a: Áp dụng định lí cosin:  \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

+) Tính góc \(B,C\): Áp dụng định lí sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

Lời giải chi tiết:

Áp dụng định lí cosin, ta có:

 \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)

LG b

b) Diện tích tam giác ABC

Phương pháp giải:

Áp dụng công thức \(S = \frac{1}{2}bc.\sin A\)

Lời giải chi tiết:

Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)

LG c

c) Bán kính đường tròn ngoại tiếp và đường cao AH của tam giác.

Phương pháp giải:

+) Áp dụng định lí sin: \(R = \frac{a}{{2\sin A}}\)

+) Đường cao AH: \(AH = \frac{{2S}}{a}\)

Lời giải chi tiết:

+) Theo định lí sin, ta có: \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin {{120}^ \circ }}} = \sqrt {43} \)

+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)


Bình chọn:
3.9 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí