Giải bài 8 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo


Đề bài

Cho hai điểm \(A\left( {1;3} \right),B\left( {4;2} \right)\)

a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA=DB

b) Tính chu vi tam giác OAB

c) Chứng minh rằng OA vuông góc  AB và từ đó tính diện tích tam giác OAB

Lời giải chi tiết

a) Gọi tọa độ điểm D là \((x;0)\)

Ta có: \(\overrightarrow {DB}  = \left( {4 - x;2} \right) \Rightarrow DB = \left| {\overrightarrow {DB} } \right| = \sqrt {{{\left( {4 - x} \right)}^2} + {2^2}} \)

\(\begin{array}{l}DA = DB \Leftrightarrow \sqrt {{{\left( {1 - x} \right)}^2} + {3^2}}  = \sqrt {{{\left( {4 - x} \right)}^2} + {2^2}} \\ \Rightarrow {\left( {1 - x} \right)^2} + {3^2} = {\left( {4 - x} \right)^2} + {2^2}\\ \Rightarrow x^2 -2x+10 = x^2 -8x+ 20\\ \Rightarrow 6x = 10\\ \Rightarrow x = \frac{5}{3}\end{array}\)

Thay \(x = \frac{5}{3}\) ta thấy thảo mãn phương trình

Vậy khi \(D\left( {\frac{5}{3};0} \right)\) thì  DA=DB

b) Ta có: \(\overrightarrow {OA}  = \left( {1;3} \right) \Rightarrow OA = \left| {\overrightarrow {OA} } \right| = \sqrt {{1^2} + {3^2}}  = \sqrt {10} \)

          \(\overrightarrow {OB}  = \left( {4;2} \right) \Rightarrow OB = \left| {\overrightarrow {OB} } \right| = \sqrt {{4^2} + {2^2}}  = 2\sqrt 5 \)

          \(\overrightarrow {AB}  = \left( {3; - 1} \right) \Rightarrow AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}}  = \sqrt {10} \)

Chu vi tam giác OAB

\({C_{OAB}} = OA + OB + AB = \sqrt {10}  + 2\sqrt 5  + \sqrt {10}  = 2\sqrt {10}  + 2\sqrt 5 \)

c) \(\overrightarrow {OA} .\overrightarrow {AB}  = 1.3 + 3.( - 1) = 0 \Rightarrow OA \bot AB\)

Tam giác OAB vuông tại A nên diện tích của tam giác là

\({S_{OAB}} = \frac{1}{2}OA.AB = \frac{1}{2}\sqrt {10} .\sqrt {10}  = 5\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.