Giải bài 6 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo>
a) Tìm tọa độ điểm D sao cho ABCD là một hình bình hành b) Tìm tọa độ giao điểm hai đường chéo của hình bình hành ABCD c) Giải tam giác ABC
Đề bài
Cho ba điểm \(A(2;2),B(3;5),C(5;5)\)
a) Tìm tọa độ điểm D sao cho ABCD là một hình bình hành
b) Tìm tọa độ giao điểm hai đường chéo của hình bình hành ABCD
c) Giải tam giác ABC
Phương pháp giải - Xem chi tiết
a) Bước 1: Xác định tọa độ vectơ \(\overrightarrow {AB} \), \(\overrightarrow {DC} \)
Bước 2: Áp dụng quy tắc hình bình hành \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \) (hai vectơ bằng nhau thì tọa độ tương ứng của chúng bằng nhau)
b) Áp dụng tính chất trung điểm
c) Sử dụng ứng dụng biểu thức tọa độ của các phép toán vectơ
Lời giải chi tiết
a) Gọi tọa độ của điểm D là \(\left( {x;y} \right)\) ta có: \(\overrightarrow {AB} = \left( {1;3} \right)\), \(\overrightarrow {DC} = \left( {5 - x;5 - y} \right)\)
Để ABCD là hình bình hành thì \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \)
Suy ra \(\left\{ \begin{array}{l}5 - x = 1\\5 - y = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\end{array} \right.\)
Vậy để ABCD là hình bình hành thì tọa độ điểm D là \(D\left( {4;2} \right)\)
b) Gọi M là giao điểm của hai đường chéo, suy ra M là trung điểm của AC
Suy ra: \({x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2};{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2}\)
Vậy tọa đọ giao điểm của hai đường chéo hình bình hành ABCD là \(M\left( {\frac{7}{2};\frac{7}{2}} \right)\)
c) Ta có: \(\overrightarrow {AB} = \left( {1;3} \right),\overrightarrow {AC} = \left( {3;3} \right),\overrightarrow {BC} = \left( {2;0} \right)\)
Suy ra: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {3^2}} = \sqrt {10} ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{3^2} + {3^2}} = 3\sqrt 2 \)
\(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{2^2} + {0^2}} = 2\)
\(\begin{array}{l}\cos A = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{AB.AC}} = \frac{{1.3 + 3.3}}{{\sqrt {10} .3\sqrt 2 }} = \frac{{2\sqrt 5 }}{5} \Rightarrow \widehat A \approx 26^\circ 33'\\\cos B = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{BA.BC}} = \frac{{\left( { - 1} \right).2 + \left( { - 3} \right)0}}{{\sqrt {10} .2}} = - \frac{{\sqrt {10} }}{{10}} \Rightarrow \widehat B = 108^\circ 26'\\\widehat C = 180^\circ - \widehat A - \widehat B = 180^\circ - 26^\circ 33' - 108^\circ 26' = 45^\circ 1'\end{array}\)
- Giải bài 7 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 8 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 9 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 10 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 5 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải Hoạt động 3 trang 96 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 94 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 1 trang 92, 93 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 90 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 89 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 96 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 94 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 1 trang 92, 93 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 3 trang 90 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải Hoạt động 2 trang 89 SGK Toán 10 tập 2 - Chân trời sáng tạo