Giải bài 8 trang 100 SGK Toán 10 tập 1 – Cánh diều


Cho hình bình hành ABCD có AB = 4, AD = 6, BAD =60 (Hình 73).

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho hình bình hành ABCD có AB = 4, AD = 6, \(\widehat {BAD} = {60^o}\) (Hình 73).

a) Biểu thị các vecto \(\overrightarrow {BD} ,\overrightarrow {AC} \) theo \(\overrightarrow {AB} ,\overrightarrow {AD} .\)

b) Tính các tích vô hướng  \(\overrightarrow {AB} .\overrightarrow {AD} ,\;\overrightarrow {AB} .\overrightarrow {AC} ,\;\overrightarrow {BD} .\overrightarrow {AC} .\)

c) Tính độ dài các đường chéo \(BD,AC.\)

Phương pháp giải - Xem chi tiết

+) ABCD là hình bình hành thì \(\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} .\)

+) Tính \(\overrightarrow {AB} .\overrightarrow {AD} \) bằng công thức \(\overrightarrow {AB} .\overrightarrow {AD}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|.\cos (\overrightarrow {AB} ,\overrightarrow {AD} )\)

\(\overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {AD} )\) (tính chất phân phối)

+) Tính BD, AC bởi định lí cosin: \(B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos A\)

Lời giải chi tiết

a) \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB} ;\;\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} .\)

b) \(\overrightarrow {AB} .\overrightarrow {AD}  = 4.6.\cos \widehat {BAD} = 24.\cos {60^o} = 12.\)

\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {AD}  = {4^2} + 12 = 28.\\\overrightarrow {BD} .\overrightarrow {AC}  = (\overrightarrow {AD}  - \overrightarrow {AB} )(\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AD} ^2} - {\overrightarrow {AB} ^2} = {6^2} - {4^2} = 20.\end{array}\)

c) Áp dụng định lí cosin cho tam giác ABD ta có:

\(\begin{array}{l}\quad \;B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos A\\ \Leftrightarrow B{D^2} = {4^2} + {6^2} - 2.4.6.\cos {60^o} = 28\\ \Leftrightarrow BD = 2\sqrt 7 .\end{array}\)

Áp dụng định lí cosin cho tam giác ABC ta có:

\(\begin{array}{l}\quad \;A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\\ \Leftrightarrow A{C^2} = {4^2} + {6^2} - 2.4.6.\cos {120^o} = 76\\ \Leftrightarrow AC = 2\sqrt {19} .\end{array}\)


Bình chọn:
3.9 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí