Giải Bài 7.24 trang 30 sách bài tập toán 7 - Kết nối tri thức với cuộc sống


Chứng minh rằng tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 thì luôn chia hết cho 4

Tổng hợp đề thi học kì 2 lớp 7 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Chứng minh rằng tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 thì luôn chia hết cho 4

Gợi ý: Mỗi số tự nhiên lẻ luôn viết được dưới dạng 2n – 1 với nNnN, hoặc dưới dạng 2n + 1 với nNnN

Phương pháp giải - Xem chi tiết

- Hai số tự nhiên lẻ liên tiếp hơn kém nhau 2 đơn vị: a = 2n – 1; b = a + 2 = 2n + 1

- Tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1: Rút gọn và chứng minh tích đó có thừa số chia hết cho 4.

Lời giải chi tiết

Hai số tự nhiên lẻ liên tiếp hơn kém nhau 2 đơn vị nên nếu số thứ nhất là a = 2n – 1

Thì số thứ hai là b = a + 2 = 2n – 1 + 2 = 2n + 1.

Khi đó: tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 là:

ab+1=(2n1)(2n+1)+1=(4n2+2n2n1)+1=4n24ab+1=(2n1)(2n+1)+1=(4n2+2n2n1)+1=4n24

Chú ý:

Nếu viết 2 số lẻ liên tiếp là a = 2n + 1 và b = a + 2 = 2n + 3 thì

ab+1=(2n+1)(2n+3)+1=4(n2+2n+1)4 


Bình chọn:
3.6 trên 8 phiếu

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.