Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài 22. Ba đường conic Toán 10 Kết nối tri thức
Giải bài 7.19 trang 56 SGK Toán 10 – Kết nối tri thức>
Tìm tiêu điểm và tiêu cự của elip.
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Cho Elip có phương trình \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\). Tìm tiêu điểm và tiêu cự của elip.
Phương pháp giải - Xem chi tiết
Tính \(c = \sqrt {{a^2} - {b^2}} \),
+ Tiêu điểm: \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)
+ Tiêu cự: \({F_1}{F_2} = 2c\).
Lời giải chi tiết
Ta có: \({a^2} = 36,{b^2} = 9 \Rightarrow c = \sqrt {36 - 9} = 3\sqrt 3 \) nên elip có hai tiêu điểm là \({F_1}\left( { - 3\sqrt 3 ;0} \right);{F_2}\left( {3\sqrt 3 ;0} \right)\) và tiêu cự là \({F_1}{F_2} = 2c = 6\sqrt 3 \).
- Giải bài 7.20 trang 56 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.21 trang 56 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.22 trang 56 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.23 trang 56 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.24 trang 56 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




