Giải bài 6 trang 58 SGK Toán 7 tập 2 - Chân trời sáng tạo


Cho Hình 25 có EF = HG, EG = HF. Chứng minh rằng:

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Cho Hình 25 có EF = HG, EG = HF. Chứng minh rằng:

a) \(\Delta EFH=\Delta HGE\)

b) EF // HG

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Chứng minh 2 tam giác bằng nhau (c-c-c)

- Chứng minh 2 góc ở vị trí so le trong bằng nhau

Lời giải chi tiết

a) Xét \(\Delta EFH\) và \(\Delta HGE\) có :

EF = HG; FH = GE; EH chung

\(\Rightarrow \Delta EFH=\Delta HGE\) (c-c-c)

\( \Rightarrow \widehat {FEH} = \widehat {EHG}\)( 2 góc tương ứng )

b) Vì \(\widehat {FEH}=\widehat {EHG}\)

Mà 2 góc này ở vị trí so le trong

Do đó, EF // HG (Dấu hiệu nhận biết)


Bình chọn:
4.6 trên 24 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí