Giải bài 5.7 trang 82 SGK Toán 10 – Kết nối tri thức


Tìm số trung bình, trung vị, mốt và tứ phân vị của mỗi mẫu số liệu sau đây: a) Số điểm mà năm vận động viên bóng rổ ghi được trong một trận đấu: b) Giá của một số loại giày (đơn vị nghìn đồng): 350 300 650 300 450 500 300 250 c) Số kênh được chiếu của một số hãng truyền hình cáp: 36 38 33 34 32 30 34 35

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Tìm số trung bình, trung vị, mốt và tứ phân vị của mỗi mẫu số liệu sau đây:

a) Số điểm mà năm vận động viên bóng rổ ghi được trong một trận đấu:

9   8   15   8   20

b) Giá của một số loại giày (đơn vị nghìn đồng):

350  300  650  300  450  500  300  250

c) Số kênh được chiếu của một số hãng truyền hình cáp:

36  38  33  34  32  30  34  35

Phương pháp giải - Xem chi tiết

- Áp dụng công thức số trung bình của mẫu số liệu \({x_1},{x_2},...,{x_n}\):

\(\overline X = \dfrac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)

- Số trung vị

+ Sắp xếp lại số liệu theo thứ tự không giảm.

+ Nếu số giá trị của mẫu số liệu là số lẻ thì giá trị chính giữa của mẫu là trung vị. Nếu là số chẵn thì trung vị là trung bình cộng của hai giá trị chính giữa của mẫu.

- Mốt: Giá trị xuất hiện với tần số lớn nhất.

- Tứ phân vị

+ Sắp xếp theo thứ tự không giảm.

+ Tìm trung vị. Giá trị này là \({Q_2}\)

+ Tìm trung vị của nửa số liệu bên trái \({Q_2}\), (không bao gồm \({Q_2}\), nếu n lẻ). Giá trị này là \({Q_1}\)

+ Tìm trung vị của nửa số liệu bên phải \({Q_2}\), (không bao gồm \({Q_2}\), nếu n lẻ). Giá trị này là \({Q_3}\)

Lời giải chi tiết

a) Số điểm mà năm vận động viên bóng rổ ghi được trong một trận đấu:

9   8   15   8   20

Số trung bình: \(\overline X = \dfrac{{9 + 8 + 15 + 8 + 20}}{5} = 12\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

8  8  9  15  20

Ta có n=5 là số lẻ nên trung vị là 9.

Mốt: Ta thấy số 8 là số có tần số cao nhất (xuất hiện 2 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 9=> \({Q_2} = 9\).

+ Tìm \({Q_1}\)

Nửa số liệu bên trái là:

8  8

Trung vị của mẫu này là \(\dfrac{{8 + 8}}{2} = 8\)=>\({Q_1} = 8\)

+ Tìm \({Q_3}\)

Nửa số liệu bên phải là:

15  20

Trung vị của mẫu này là \(\dfrac{{15 + 20}}{2} = 17,5\)=>\({Q_3} = 17,5\)

Vậy số trung bình là 12, trung vị là 9 và mốt là 8, \({Q_1} = 8\), \({Q_3} = 17,5\)

b) Giá của một số loại giày (đơn vị nghìn đồng):

350  300  650  300  450  500  300  250

Số trung bình: \(\overline X ) \( = \dfrac{{350 + 300.3 + 650 + 450 + 500 + 250}}{8}\) \( = 387,5\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

250  300  300  300  350  450  500  650

Ta có n=8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.

Hai số chính giữa là 300 và 350

=> Trung vị là \(\dfrac{{300 + 350}}{2} = 325\)

Mốt: Ta thấy số 300 là số có tần số cao nhất (xuất hiện 3 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 325=> \({Q_2} = 325\).

+ Tìm \({Q_1}\)

Vì n chẵn nên nửa số liệu bên trái là:

250  300  300  300

Trung vị của mẫu này là \(\dfrac{{300 + 300}}{2} = 300\)=>\({Q_1} = 300\)

+ Tìm \({Q_3}\)

Vì n chẵn nên nửa số liệu bên phải là:

350  450  500  650

Trung vị của mẫu này là \(\dfrac{{450 + 500}}{2} = 475\)=>\({Q_3} = 475\)

 

Vậy số trung bình là 387,5, trung vị là 325 và mốt là 300, \({Q_1} = 300\), \({Q_3} = 475\)

c) Số kênh được chiếu của một số hãng truyền hình cáp:

36  38  33  34  32  30  34  35

Số trung bình: \(\overline X = \dfrac{{36 + 38 + 33 + 34.2 + 32 + 30 + 35}}{8} = 34\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

30  32  33  34  34  35  36  38

Ta có n=8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.

Hai số chính giữa là 34 và 34

=> Trung vị là 34

Mốt: Ta thấy số 34 là số có tần số cao nhất (xuất hiện 2 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 34=> \({Q_2} = 34\).

+ Tìm \({Q_1}\)

Vì n chẵn nên nửa số liệu bên trái là:

30  32  33  34

Trung vị của mẫu này là \(\dfrac{{32 + 33}}{2} = 32,5\)=>\({Q_1} = 32,5\)

+ Tìm \({Q_3}\)

Vì n chẵn nên nửa số liệu bên phải là:

34  35  36  38

Trung vị của mẫu này là \(\dfrac{{35 + 36}}{2} = 35,5\)=>\({Q_3} = 35,5\)

 

Vậy số trung bình là 34, trung vị là 34 và mốt là 34, \({Q_1} = 32,5\), \({Q_3} = 35,5\)

Chú ý

Nếu n chẵn thì nửa số liệu bên trái (phải) \({Q_2}\) phải chứa cả \({Q_2}\)


Bình chọn:
3.9 trên 9 phiếu
  • Giải bài 5.8 trang 82 SGK Toán 10 – Kết nối tri thức

    Hãy chọn số đặc trưng đo xu thế trung tâm của mỗi mẫu số liệu sau. Giải thích và tinh giá trị của số đặc trưng đó. a) Số mặt trăng đã biết của các hành tinh: b) Số đường chuyền thành công trong một trận đấu của một số cầu thủ bóng đá: 32 24 20 14 23. c) Chỉ số IQ của một nhóm học sinh: 60 72 63 83 68 74 90 86 74 80. d) Các sai số trong một phép đo: 10 15 16 15 14 13 42 15 12 14 42.

  • Giải bài 5.9 trang 83 SGK Toán 10 – Kết nối tri thức

    Số lượng học sinh giỏi Quốc gia năm học 2016-2017 của 10 trường Trung học phổ thông được cho như sau: 0 0 4 0 0 0 10 0 6 0. a) Tìm số trung bình, mốt, các tứ phân vị của mẫu số liệu trên. b) Giải thích tại sao tứ phân vị thứ nhất và trung vị trùng nhau.

  • Giải bài 5.10 trang 83 SGK Toán 10 – Kết nối tri thức

    Bảng sau đây cho biết số chỗ ngồi của một số sân vận động được sử dụng trong Giải Bóng đá Vô địch Quốc gia Việt Nam năm 2018 (số liệu gần đúng). Các giá trị số trung bình, trung vị, mốt bị ảnh hưởng thế nào nếu bỏ đi số liệu chỗ ngồi của Sân vận động Quốc gia Mỹ Đình?

  • Giải mục 3 trang 81, 82 SGK Toán 10 tập 1 - Kết nối tri thức

    Một cửa hàng giày thể thao đã thống kê cỡ giày của một số khách hàng nam được chọn ngẫu nhiên cho kết quả như sau: Hai phương pháp học tiếng Anh khác nhau được áp dụng cho hai lớp A và B có trình độ tiếng Anh tương đương nhau. Sau hai tháng, điềm khảo sát tiếng Anh (thang điểm 10) của hai lớp được cho như hình bên.

  • Giải mục 2 trang 80, 81, 82 SGK Toán 10 tập 1 - Kết nối tri thức

    Điểm (thang điểm 100) của 12 thí sinh cao điểm nhất trong một cuộc thi như sau: Bảng sau đây cho biết số lần học tiếng Anh trên internet trong một tuần của một số học sinh lớp 10:

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí