Giải bài 5 trang 27 SGK Toán 7 tập 1 - Chân trời sáng tạo


Đề bài

Tìm x, biết:

a)\( - \frac{3}{5}.x = \frac{{12}}{{25}};\)

b)\(\frac{3}{5}x - \frac{3}{4} =  - 1\frac{1}{2};\)

c)\(\frac{2}{5} + \frac{3}{5}:x = 0,5;\)

d)\(\frac{3}{4} - \left( {x - \frac{1}{2}} \right) = 1\frac{2}{3}\)

e)\(2\frac{2}{{15}}:\left( {\frac{1}{3} - 5x} \right) =  - 2\frac{2}{5}\)

g)\({x^2} + \frac{1}{9} = \frac{5}{3}:3.\)

Phương pháp giải - Xem chi tiết

Muốn tìm thừa số chưa biết, ta lấy tích chia cho thừa số đã biết

Muốn tìm số chia, ta lấy số bị chia chia cho thương

Lời giải chi tiết

a)

\(\begin{array}{l} - \frac{3}{5}.x = \frac{{12}}{{25}}\\x = \frac{{12}}{{25}}:\frac{{ - 3}}{5}\\x = \frac{{12}}{{25}}.\frac{{ - 5}}{3}\\x = \frac{{ - 4}}{5}\end{array}\)

Vậy \(x = \frac{{ - 4}}{5}\)

b)

\(\begin{array}{l}\frac{3}{5}x - \frac{3}{4} =  - 1\frac{1}{2};\\\frac{3}{5}x = \frac{{ - 3}}{2} + \frac{3}{4}\\\frac{3}{5}x = \frac{{ - 3}}{4}\\x = \frac{{ - 3}}{4}:\frac{3}{5}\\x = \frac{{ - 5}}{4}\end{array}\)

Vậy \(x = \frac{{ - 5}}{4}\).

c)

\(\begin{array}{l}\frac{2}{5} + \frac{3}{5}:x = 0,5\\\frac{3}{5}:x = \frac{1}{2} - \frac{2}{5}\\\frac{3}{5}:x = \frac{1}{{10}}\\x = \frac{3}{5}:\frac{1}{{10}}\\x = 6\end{array}\)

Vậy \(x = 6\).

d)

\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{1}{2}} \right) = 1\frac{2}{3}\\x - \frac{1}{2} = \frac{3}{4} - \frac{5}{3}\\x - \frac{1}{2} = \frac{{ - 11}}{{12}}\\x = \frac{{ - 11}}{{12}} + \frac{1}{2}\\x = \frac{{ - 5}}{{12}}\end{array}\)

Vậy \(x = \frac{{ - 5}}{{12}}\).

e)

\(\begin{array}{l}2\frac{2}{{15}}:\left( {\frac{1}{3} - 5x} \right) =  - 2\frac{2}{5}\\\frac{{32}}{{15}}:\left( {\frac{1}{3} - 5x} \right) =  - \frac{{12}}{5}\\\frac{1}{3} - 5x = \frac{{32}}{{15}}:\frac{{ - 12}}{5}\\\frac{1}{3} - 5x = \frac{{ - 8}}{9}\\5x = \frac{1}{3} + \frac{8}{9}\\5x = \frac{{11}}{9}\\x = \frac{{11}}{9}:5\\x = \frac{{11}}{{45}}\end{array}\)

Vậy \(x = \frac{{11}}{{45}}\).

g)

\(\begin{array}{l}{x^2} + \frac{1}{9} = \frac{5}{3}:3\\{x^2} + \frac{1}{9} = \frac{5}{9}\\{x^2} = \frac{5}{9} - \frac{1}{9}\\{x^2} = \frac{4}{9}\\x =  \pm \frac{2}{3}\end{array}\)

Vậy \(x =  \pm \frac{2}{3}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm