
Đề bài
Cho hình bình hành ABCD. Gọi M là trung điểm của cạnh BC. Hãy biểu thị \(\overrightarrow {AM} \) theo hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \).
Phương pháp giải - Xem chi tiết
Bước 1: Phân tích vecto \(\overrightarrow {AM} \) theo hai vecto cạnh.
Bước 2: Biểu thị hai vecto cạnh theo vecto \(\overrightarrow {AB} \), \(\overrightarrow {AD} \).
Lời giải chi tiết
Từ M kẻ đường thẳng song song với AB, cắt AD tại E.
Khi đó tứ giác ABME là hình bình hành.
Do đó: \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AE} \).
Dễ thấy: \(AE = BM = \frac{1}{2}BC = \frac{1}{2}AD\)
\( \Rightarrow \overrightarrow {AE} = \frac{1}{2}\overrightarrow {AD} \)
\( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \)
Vậy \(\overrightarrow {AM} = \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \)
Chú ý khi giải
+) Dựng hình hình hành sao cho đường chéo là vecto cần biểu thị, 2 cạnh của nó song song với giá của hai vecto đang biểu thị theo.
Cho tứ giác ABCD. Gọi M, N tương ứng là trung điểm của các cạnh AB, CD. Chứng minh
Cho hai điểm phân biệt A và B.
Cho tam giác ABC a) Hãy xác định điểm M để MA +MB+2MC=0 b) Chứng minh rằng với mọi điểm O, ta có OA+OB+2OC = 4OM
Chất điểm A chịu tác động của ba lực F1, F2, F3 như hình 4.30 và ở trạng thái cân bằng
Với u khác 0 và hai số thực k, t, những khẳng định nào sau đây là đúng? Hãy chỉ ra trên Hình 4.26 hai vecto 3u+v và 3u + 3v. Cho tam giác ABC có trọng tâm G. Chứng minh rằng với điểm O tùy ý, ta có Trong hình 4.27, hãy biểu thị mỗi vecto u ,v theo hai vecto a, b
1a và a có bằng nhau hay không? Trên một trục số, gọi O, A, M, N tương ứng biểu thị các số 0, 1, . Hãy nêu mối quan hệ về hướng và độ dài -a và -1a có mối quan hệ gì? Cho đường thẳng d đi qua hai điểm phân biệt A và B. Những khẳng định nào sau đây là đúng?
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: