Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài tập cuối chương III Toán 10 Kết nối tri thức
Giải bài 3.12 trang 44 SGK Toán 10 tập 1 – Kết nối tri thức>
Cho tam giác ABC có B = 135. Khẳng định nào sau đây là đúng?
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Cho tam giác ABC có \(\widehat B = {135^o}\). Khẳng định nào sau đây là đúng?
LG a
A. \(S = \frac{1}{2}ca\)
B. \(S = \frac{{ - \sqrt 2 }}{4}ac\)
C. \(S = \frac{{\sqrt 2 }}{4}bc\)
D. \(S = \frac{{\sqrt 2 }}{4}ca\)
Phương pháp giải:
Diện tích tam giác ABC: \(S = \frac{1}{2}ac.\sin B\)
Lời giải chi tiết:
Diện tích tam giác ABC: \(S = \frac{1}{2}ac.\sin B\).
Mà \(\widehat B = {135^o} \Rightarrow \sin B = \sin {135^o} = \frac{{\sqrt 2 }}{2}\).
\( \Rightarrow S = \frac{1}{2}ac.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{4}.ac\).
Chọn D
LG b
A. \(R = \frac{a}{{\sin A}}\)
B. \(R = \frac{{\sqrt 2 }}{2}b\)
C. \(R = \frac{{\sqrt 2 }}{2}c\)
D. \(R = \frac{{\sqrt 2 }}{2}a\)
Phương pháp giải:
Định lí sin: \(2R = \frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Lời giải chi tiết:
Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\).
=> \(R = \frac{a}{{2\sin A}}\) => A sai.
\(R = \frac{b}{{2\sin B}}=\frac{b}{{2\sin 135^o}}=\frac{{\sqrt 2 }}{2}b\) => B đúng.
C. \(R = \frac{{\sqrt 2 }}{2}c\) (Loại vì không có dữ kiện về góc C nên không thể tính R theo c).
D. \(R = \frac{{\sqrt 2 }}{2}a\) (Loại vì không có dữ kiện về góc A nên không thể tính R theo a).
Chọn B
LG c
A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab\).
B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\).
C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\).
D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}\).
Phương pháp giải:
Định lí sin: \(2R = \frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Định lí cos: \({b^2} = {c^2} + {a^2} - 2ca.\cos B;\;\;{a^2} = {c^2} + {b^2} - 2bc.\cos A\).
Lời giải chi tiết:
A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab\) (Loại).
Vì: Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\).
Không đủ dữ kiện để suy ra \({a^2} = {b^2} + {c^2} + \sqrt 2 ab\).
B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\) (Loại).
Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\) suy ra \( \frac{b}{{\sin A}} = \frac{a}{{\sin B}}\) là sai.
C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\)(sai vì theo câu a, \(\sin B = \frac{{\sqrt 2 }}{2}\)).
D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}\).
Theo định lý cos ta có:
\({b^2} = {c^2} + {a^2} - 2ca.\cos B\) (*)
Mà \(\widehat B = {135^o} \Rightarrow \cos B = \cos {135^o}\).
Thay vào (*) ta được: \({b^2} = {c^2} + {a^2} - 2ca\;\cos {135^o}\).
=> D đúng.
Chọn D
- Giải bài 3.13 trang 44 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 3.14 trang 44 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 3.15 trang 44 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 3.16 trang 44 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 3.17 trang 44 SGK Toán 10 tập 1 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




