Giải bài 2.50 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống>
Một dãy số \(({u_n})\) được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi
Đề bài
Một dãy số \(({u_n})\) được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi
\({u_1} = a,\,\,{u_{n + 1}} = q{u_n} + d\)
Nếu \(q = 1\) ta có cấp số cộng với công sai d, còn nếu \(d = 0\) ta có cấp số nhân với công bội q.
a) Giả sử \(q \ne 1\). Dự đoán công thức số hạng tổng quát \({u_n}\).
b) Thiết lập công thức tính tổng \({S_n}\)của n số hạng đầu của cấp số nhân cộng \(({u_n})\).
Phương pháp giải - Xem chi tiết
Viết lần lượt số hạng của dãy để thấy được công thức tổng quát
Lời giải chi tiết
Ta viết lần lượt các số hạng của dãy
\(\begin{array}{l}{u_1} = a,\,\\{u_2} = q{u_1} + d\\{u_3} = q{u_2} + d = q\left( {q{u_1} + d} \right) + d = {q^2}{u_1} + d\left( {q + 1} \right)\\{u_4} = q{u_3} + d = q\left( {{q^2}{u_1} + d\left( {q + 1} \right)} \right) + d = {q^3}{u_1} + d\left( {{q^2} + q + 1} \right)\\\,\,\,\,\,\,\, = {q^3}{u_1} + d\frac{{1 - {q^3}}}{{1 - q}}.\end{array}\)
Làm tương tự ta được công thức số hạng tổng quát
\({u_n}\, = {q^{n - 1}}{u_1} + d\frac{{1 - {q^{n - 1}}}}{{1 - q}}.\)
b) Ta viết tổng n số hạng như sau:
\(\begin{array}{l}{S_n} = {u_1} + {u_2} + ... + {u_n} = {u_1} + \left( {q{u_1} + d} \right) + \left( {q{u_2} + d} \right) + ...\left( {q{u_{n - 1}} + d} \right)\\\,\,\,\,\,\,\, = {u_1} + q{S_{n - 1}} + (n - 1)d\end{array}\)
Vậy ta được \({S_n}\) cũng là một cấp số nhân cộng với \({S_1} = {u_1}\)
Áp dụng công thức của cấp số nhân cộng ở câu a, ta được
\({S_n}\, = {q^{n - 1}}{S_1} + d\frac{{1 - {q^{n - 1}}}}{{1 - q}} = {q^{n - 1}}{u_1} + d\frac{{1 - {q^{n - 1}}}}{{1 - q}}.\)
- Giải bài 2.49 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 2.48 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 2.47 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 2.46 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 2.45 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 43 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 39 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 40 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 41 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 42 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 43 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 42 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 41 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 40 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 39 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống