Giải bài 2.39 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Có bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1024.

Đề bài

Có bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1024.

A. 1                     

B. 2                     

C. 3                     

D. 4.

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính tổng của cấp số nhân \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\) và công thức số hạng tổng quát để tìm ra số hạng đầu tiên và công bội.

Lời giải chi tiết

Đáp án D.

Cấp số nhân \({u_1} = {u_3}\frac{1}{{{q^2}}},\,\,{u_2} = {u_3}.\frac{1}{q},\,\,{u_3},\,{u_4} = \,{u_1}.q,\,\,{u_5} = {u_1}.{q^2}\)

Tích của 5 số hạng này là: \(P = {u_3}\frac{1}{{{q^2}}}.{u_3}.\frac{1}{q}.{u_3}.{u_3}.q.{u_3}.{q^2} = u_3^5\).

Suy ra \(1024 = u_3^5 \Rightarrow {u_3} = 4.\) (1).

Tổng của cấp số nhân 5 số hạng này là :

\(\begin{array}{l}{S_5} = \frac{{{u_3}\frac{1}{{{q^2}}}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{{u_3}\left( {1 - {q^5}} \right)}}{{{q^2}(1 - q)}} = \frac{{4.\left( {1 - {q^5}} \right)}}{{{q^2}(1 - q)}} \Rightarrow 31 = \frac{{4\left( {1 - {q^5}} \right)}}{{{q^2}(1 - q)}}\\ \Rightarrow 31.{q^2}(1 - q) = 4\left( {1 - {q^5}} \right)\\ \Rightarrow 31.{q^2}(1 - q) = 4(1 - q)(1 + q + {q^2} + {q^3} + {q^4})\\ \Rightarrow (1 - q)(4{q^4} + 4{q^3} - 27{q^2} + 4q + 4) = 0\\ \Rightarrow (1 - q)\left( {\frac{4}{{{q^2}}} + \frac{4}{q} - 27 + 4q + 4{q^2}} \right) = 0\\ \Rightarrow (1 - q)\left( {\frac{4}{{{q^2}}} + 8 + 4{q^2} + \frac{4}{q} + 4q - 35} \right) = 0\\ \Rightarrow (1 - q)\left( {{{\left( {\frac{2}{q} + 2q} \right)}^2} + 2\left( {\frac{2}{q} + 2q} \right) - 35} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}q = 1\\\frac{2}{q} + 2q =  - 7\\\frac{2}{q} + 2q = 5\end{array} \right. \Rightarrow \left[ \begin{array}{l}q = 1(L)\\2{q^2} + 7q + 2 = 0\\2{q^2} - 5q + 2 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}q = \frac{{\sqrt {33}  - 7}}{4}\\q = \frac{{ - \sqrt {33}  - 7}}{4}\\q = \frac{1}{2}\\q = 2\end{array} \right.\end{array}\).

Vậy có 4 nghiệm q thỏa mãn. Vậy có 4 cấp số cộng thỏa mãn yêu cầu đề bài.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí