Giải bài 1 trang 80 SGK Toán 7 tập 1 - Chân trời sáng tạo


Đề bài

Trong Hình 15, cho biết a // b, Tìm số đo các góc đỉnh A và B

Phương pháp giải - Xem chi tiết

*2 góc đối đỉnh thì bằng nhau

*Sử dụng tính chất của 2 đường thẳng song song:

Một đường thẳng cắt hai đường thẳng song song thì:

+ 2 góc so le trong bằng nhau

+ 2 góc đồng vị bằng nhau

Lời giải chi tiết

Ta có: \(\widehat {{A_3}} = \widehat {{A_1}}\) ( 2 góc đối đỉnh), mà \(\widehat {{A_3}} = 32^\circ \) nên \(\widehat {{A_1}} = 32^\circ \)

Vì \(\widehat {{A_3}} + \widehat {{A_4}} = 180^\circ \)( 2 góc kề bù) nên \(32^\circ  + \widehat {{A_4}} = 180^\circ  \Rightarrow \widehat {{A_4}} = 180^\circ  - 32^\circ  = 148^\circ \)

Vì \(\widehat {{A_2}} = \widehat {{A_4}}\)( 2 góc đối đỉnh), mà \(\widehat {{A_4}} = 148^\circ \) nên \(\widehat {{A_2}} = 148^\circ \)

Vì a // b nên:

+)  \(\widehat {{A_3}} = \widehat {{B_1}}\) ( 2 góc so le trong), mà \(\widehat {{A_3}} = 32^\circ \) nên \(\widehat {{B_1}} = 32^\circ \)

+) \(\widehat {{A_4}} = \widehat {{B_2}}\)( 2 góc so le trong), mà \(\widehat {{A_4}} = 148^\circ \) nên \(\widehat {{B_2}} = 148^\circ \)

+) \(\widehat {{A_3}} = \widehat {{B_3}}\) ( 2 góc đồng vị), mà \(\widehat {{A_3}} = 32^\circ \) nên \(\widehat {{B_3}} = 32^\circ \)

+) \(\widehat {{A_4}} = \widehat {{B_4}}\)( 2 góc đồng vị), mà \(\widehat {{A_4}} = 148^\circ \) nên \(\widehat {{B_4}} = 148^\circ \)

Chú ý:

Trong các bài tập tìm số đo góc, ta có thể sử dụng linh hoạt các vị trí đối đỉnh, so le trong, đồng vị, kề bù


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm