Chương 2 Dãy số. Cấp số cộng và cấp số nhân

Bình chọn:
4.4 trên 102 phiếu
Lý thuyết Cấp số nhân

1. Định nghĩa

Xem lời giải

Lý thuyết Cấp số cộng

1. Định nghĩa

Xem lời giải

Lý thuyết Dãy số

1. Định nghĩa dãy số

Xem lời giải

Câu hỏi mở đầu trang 52

Một công ty tuyển một chuyên gia về công nghệ thông tin với mức lương năm đầu là 240 triệu đồng và cam kết sẽ tăng thêm 5% lương mỗi năm so với năm liền trước đó. Tính tổng số lương mà chuyên gia đó nhận được sau khi làm việc cho công ty 10 năm (làm tròn đến triệu đồng).

Xem chi tiết

Câu hỏi mở đầu trang 48

Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở hàng thứ hai, 20 ghế ở hàng thứ 3 và cứ tiếp tục theo quy luật đó, tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Tính tổng số ghế của nhà hát đó.

Xem chi tiết

Câu hỏi mở đầu trang 42

Năm 2020, số dân của một thành phố trực thuộc tỉnh là khoảng 500 nghìn người. Người ta ước tính rằng số dân của thành phố đó sẽ tăng trưởng với tốc độ khoảng 2% mỗi năm. Khi đó số dân \( P_n \) (nghìn người) của thành phố đó sau \( n \) năm, kể từ năm 2020, được tính bằng công thức \( P_n = 500(1 + 0,02)^n \). Hỏi nếu tăng trưởng theo quy luật như vậy thì vào năm 2030, số dân của thành phố đó là khoảng bao nhiêu nghìn người?

Xem chi tiết

Bài 2.22 trang 56

Khẳng định nào sau đây là sai? A. Một dãy số tăng thì bị chặn dưới B. Một dãy số giảm thì bị chặn trên C. Một dãy số bị chặn thì phải tăng hoặc giảm D. Một dãy số không đổi thì bị chặn

Xem lời giải

Bài 2.23 trang 56

Cho dãy số (1,frac{1}{2},frac{1}{4},frac{1}{8}, ldots ;) (số hạng sau bằng một nửa số hạng liền trước nó) Công thức tổng quát của dãy số đã cho là:

Xem lời giải

Giải mục 1 trang 52, 53

Cho dãy số (left( {{u_n}} right)) với ({u_n} = {3.2^n}) a) Viết năm số hạng đầu của dãy số này b) Dự đoán hệ thức truy hồi liên hệ giữa ({u_n}) và ({u_{n - 1}})

Xem lời giải

Giải mục 1 trang 48, 49

Cho dãy số (left( {{u_n}} right)) gồm tất cả các số tự nhiên lẻ, xếp theo thứ tự tăng dần a) Viết năm số hạng đầu của dãy số b) Dự đoán công thức biểu diễn số hạng ({u_n}) theo số hạng ({u_{n - 1}})

Xem lời giải

Giải mục 1 trang 42, 43

Viết năm số chính phương đầu theo thứ tự tăng dần. Từ đó, dự đoán công thức tính số chính phương thứ n.

Xem lời giải

Bài 2.24 trang 56

Cho dãy số (({u_n})) với ({u_n} = 3n + 6). Khẳng định nào sau đây là đúng?

Xem lời giải

Giải mục 2 trang 53, 54

Cho cấp số nhân (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công bội (q) a) Tính các số hạng ({u_2},{u_3},{u_4},{u_5}) theo ({u_1}) và (q). b) Dự đoán công thức tính số hạng thứ n theo ({u_1}) và (q).

Xem lời giải

Giải mục 2 trang 49

Cho cấp số cộng (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công sai d a) Tính các số hạng ({u_2},{u_3},{u_4},{u_5}) theo ({u_1}) và d b) Dự đoán công thức tính số hạng tổng quát ({u_n}) theo ({u_1}) và d

Xem lời giải

Giải mục 2 trang 43, 44

Xét dãy số (({u_n})) gồm tất cả các số nguyên dương chia hết cho 5: (5;10;15;20;25;30; ldots ) a) Viết công thức số hạng tổng quát ({u_n}) của dãy số b) Xác định số hạng đầu và viết công thức tính số hạng thứ n theo số hạng thứ n – 1 của dãy số. Công thức thu được gọi là hệ thức truy hồi

Xem lời giải

Bài 2.25 trang 56

Trong các dãy số cho bởi công thức truy hồi sau, dãy số nào là cấp số nhân? A. ({u_1} = - 1,;{u_{n + 1}} = u_n^2) B. ({u_1} = - 1,;{u_{n + 1}} = 2{u_n}) C. ({u_1} = - 1,;{u_{n + 1}} = {u_n} + 2) D. ({u_1} = - 1,;{u_{n + 1}} = {u_n} - 2)

Xem lời giải

Giải mục 3 trang 54, 55

Cho cấp số nhân (left( {{u_n}} right)) với số hạng đầu ({u_1} = a) và công bội (q ne 1) Để tính tổng của n số hạng đầu ({S_n} = {u_1} + {u_2} + ldots + {u_{n - 1}} + {u_n})

Xem lời giải

Giải mục 3 trang 50

Cho cấp số cộng (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công sai d Để tính tổng của n số hạng đầu ({S_n} = {u_1} + {u_2} + ldots + {u_{n - 1}} + {u_n})

Xem lời giải

Giải mục 3 trang 45, 46

a) Xét dãy số (left( {{u_n}} right)) với ({u_n} = 3n - 1). Tính ({u_{n + 1}}) và so sánh với ({u_n}) b) Xét dãy số (left( {{v_n}} right)) với ({v_n} = frac{1}{{{n^2}}}). Tính ({v_{n + 1}}) Và so sánh với ({v_n})

Xem lời giải

Bài 2.26 trang 56

Tổng 100 số hạng đầu của dãy số (left( {{u_n}} right))với ({u_n} = 2n - 1) là A. 199 B. ({2^{100}} - 1) C. 10 000 D. 9999

Xem lời giải

Xem thêm

Bài viết được xem nhiều nhất