Bài tập cuối chương V Toán 11 kết nối tri thức

Bình chọn:
4.7 trên 71 phiếu
Bài 5.18 trang 123

Cho dãy số (left( {{u_n}} right)) với ({u_n} = sqrt {{n^2} + 1} - sqrt n ). Mệnh đề đúng là A. (mathop {lim }limits_{n to + infty } {u_n} = - infty ) B. (mathop {lim }limits_{n to + infty } {u_n} = 1) C. (mathop {lim }limits_{n to + infty } {u_n} = + infty ) D. (mathop {lim }limits_{n to + infty } {u_n} = 0)

Xem lời giải

Bài 5.19 trang 123

Cho ({u_n} = frac{{2 + {2^2} + ldots + {2^n}}}{{{2^n}}}). Giới hạn của dãy số (left( {{u_n}} right)) bằng A. 1 B. 2 C. -1 D. 0

Xem lời giải

Bài 5.20 trang 123

Cho cấp số nhân lùi vô hạn (left( {{u_n}} right)) với ({u_n} = frac{2}{{{3^n}}}). Tổng của cấp số nhân này bằng A. 3 B. 2 C. 1 D. 6

Xem lời giải

Bài 5.21 trang 123

Cho hàm số (fleft( x right) = sqrt {x + 1} - sqrt {x + 2} ). Mệnh đề đúng là A. (mathop {lim }limits_{x to + infty } fleft( x right) = - infty ) B. (mathop {lim }limits_{x to + infty } fleft( x right) = 0) C. (mathop {lim }limits_{x to + infty } fleft( x right) = - 1) D. (mathop {lim }limits_{x to + infty } fleft( x right) = - frac{1}{2})

Xem lời giải

Bài 5.22 trang 123

Cho hàm số (fleft( x right) = frac{{x - {x^2}}}{{left| x right|}}). Khi đó (mathop {lim }limits_{x to + {0^ - }} fleft( x right)) bằng A. 0 B. 1 C. ( + infty ) D. -1

Xem lời giải

Bài 5.23 trang 123

Cho hàm số (fleft( x right) = frac{{x + 1}}{{left| {x + 1} right|}}). Hàm só (fleft( x right)) liên tục trên A. (left( { - infty ;; + infty } right)) B. (left( { - infty ;; - 1} right]) C. (left( { - infty ;; - 1} right) cup left( { - 1;; + infty } right)) D. (left[ { - 1;; + infty } right))

Xem lời giải

Bài 5.24 trang 123

Cho hàm số . Hàm số (fleft( x right)) liên tục tại (x = 1) khi A. (a = 0) B. (a = 3) C. (a = - 1) D. (a = 1)

Xem lời giải

Bài 5.25 trang 124

Cho dãy số (left( {{u_n}} right)) có tính chất (left| {{u_n} - 1} right| < frac{2}{n}). Có kết luận gì về giới hạn của dãy số này?

Xem lời giải

Bài 5.26 trang 124

Tìm giới hạn của các dãy số sau: a) ({u_n} = frac{{{n^2}}}{{3{n^2} + 7n - 2}}); b) ({v_n} = mathop sum limits_{k = 0}^n frac{{{3^k} + {5^k}}}{{{6^k}}}); c) ({w_n} = frac{{sin n}}{{4n}})

Xem lời giải

Bài 5.27 trang 124

Viết các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số. a) (1,left( {01} right)); b) (5,left( {132} right))

Xem lời giải

Bài 5.28 trang 124

Tính các giới hạn sau: a) (mathop {{rm{lim}}}limits_{x to 7} frac{{sqrt {x + 2} - 3}}{{x - 7}}); b) (mathop {{rm{lim}}}limits_{x to 1} frac{{{x^3} - 1}}{{{x^2} - 1}}) c) (mathop {{rm{lim}}}limits_{x to 1} frac{{2 - x}}{{{{left( {1 - x} right)}^2}}}); d) (mathop {{rm{lim}}}limits_{x to - infty } frac{{x + 2}}{{sqrt {4{x^2} + 1} }})

Xem lời giải

Bài 5.29 trang 124

Tính các giới hạn một bên: a) (mathop {lim }limits_{x to {3^ + }} frac{{{x^2} - 9}}{{left| {x - 3} right|}}); b) (mathop {lim }limits_{x to {1^ - }} frac{x}{{sqrt {1 - x} }})

Xem lời giải

Bài 5.30 trang 124

Chứng minh rằng giới hạn (mathop {lim }limits_{x to 0} frac{{left| x right|}}{x}) không tồn tại

Xem lời giải

Bài 5.31 trang 124

Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho a) (fleft( x right) = left{ {begin{array}{*{20}{c}}{frac{1}{x},;x ne 0}\{1;,;x = 0}end{array}} right.;;)gián đoạn tại (x = 0) b) (gleft( x right) = left{ {begin{array}{*{20}{c}}{1 + x;,;x < 1}\{2 - x;,x ge 1}end{array}} right.;;)gián đoạn tại (x = 1)

Xem lời giải

Bài 5.32 trang 124

Lực hấp dẫn tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm Trái Đất là (Fleft( r right) = left{ {begin{array}{*{20}{c}}{frac{{GMr}}{{{R^3}}};,r < R}\{frac{{GM}}{{{r^2}}};,;r ge R}end{array}} right.) Trong đó M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn. Xét tính liên tục của hàm số F(r).

Xem lời giải

Bài 5.33 trang 124

Lực hấp dẫn tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm Trái Đất là (Fleft( r right) = left{ {begin{array}{*{20}{c}}{frac{{GMr}}{{{R^3}}};,r < R}\{frac{{GM}}{{{r^2}}};,;r ge R}end{array}} right.) Trong đó M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn. Xét tính liên tục của hàm số F(r).

Xem lời giải

Bài 5.34 trang 124

Tìm các giá trị của a để hàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{x + 1;,x le a}\{{x^2},;a > a}end{array}} right.) liên tục trên (mathbb{R})

Xem lời giải