Bài 5.18 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức>
Cho dãy số (left( {{u_n}} right)) với ({u_n} = sqrt {{n^2} + 1} - sqrt n ). Mệnh đề đúng là A. (mathop {lim }limits_{n to + infty } {u_n} = - infty ) B. (mathop {lim }limits_{n to + infty } {u_n} = 1) C. (mathop {lim }limits_{n to + infty } {u_n} = + infty ) D. (mathop {lim }limits_{n to + infty } {u_n} = 0)
Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \sqrt {{n^2} + 1} - \sqrt n \). Mệnh đề đúng là
A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \)
B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\)
C. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \)
D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( + \infty \) khi \(n \to + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \)
Lời giải chi tiết
Đáp án: C
- Bài 5.19 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.20 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.21 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.22 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.23 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức