Bài 13. Hai mặt phẳng song song Toán 11 kết nối tri thức

Bình chọn:
4.3 trên 70 phiếu
Lý thuyết Hai mặt phẳng song song

1. Hai mặt phẳng song song

Xem lời giải

Giải mục 1 trang 88

Các mặt bậc thang trong Hình 4.40 gợi nên hình ảnh về các mặt phẳng không có điểm chung. Hãy tìm thêm một số ví dụ khác cũng gợi nên hình ảnh đó.

Xem lời giải

Giải mục 2 trang 89, 90, 91

Cho mặt phẳng (left( alpha right)) chứa hai đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng (left( beta right)) (H.4.41) Nếu (left( alpha right)) và (left( beta right)) cắt nhau theo giao tuyến c thì hai đường thẳng a và c có song song với nhau hay không, hai đường thẳng b và c có song song với nhau hay không? Hãy rút ra kết luận sau khi trả lời các câu hỏi trên.

Xem lời giải

Giải mục 3 trang 91

Cho mặt phẳng (P), (Q) và (R) đôi một song song. Hai đường thẳng phân biệt d và d’ cắt ba mặt phẳng lần lượt tại A, B, C và A’, B’, C’ (C khác C’). Gọi D là giao điểm của AC’ và (Q) (H.4.48) a) Các cặp đường thẳng BD và CC’, B’D và AA’ có song song với nhau không? b) Các tỉ số (frac{{AB}}{{BC}},frac{{AD}}{{DC'}}) và (frac{{A'B'}}{{B'C'}}) có bằng nhau không?

Xem lời giải

Giải mục 4 trang 91, 92, 93

Các hình ảnh dưới đây có đặc điểm chung nào với hình lăng trụ đứng tam giác mà em đã học ở lớp 7?

Xem lời giải

Bài 4.21 trang 93

Cầu thang xương cá là dạng cầu thang có hình dáng tương tư như những đốt xương cá, thường có những bậc thang với khoảng mở lớn, tạo được sự nhẹ nhàng và thoáng đãng cho không gian sông. Trong Hình 4.55, phần mép của mỗi bậc thang, nằm trên tường song song với nhau. Hãy giải thích tại sao.

Xem lời giải

Bài 4.22 trang 94

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N, P lần lượt là trung điểm của các cạnh AA’, BB’, CC’. Chứng minh rằng mặt phẳng (MNP) song song với mặt phẳng (ABC)

Xem lời giải

Bài 4.23 trang 94

Cho hình thang ABCD có hai đáy AB và CD. Qua các điểm A, D lần lượt vẽ các đường thẳng m, n song song với nhau và không nằm trong mặt phẳng (ABCD). Chứng minh rằng mp(B,m) và mp(C,n) song song với nhau.

Xem lời giải

Bài 4.24 trang 94

Cho hình tứ diện SABC. Trên cạnh SA lấy các điểm ({A_1},{A_2})sao cho (A{A_1} = {A_1}{A_2} = {A_2}S.) Gọi (P) và (Q) là hai mặt phẳng song song với mặt phẳng (ABC) và lần lượt đi qua ({A_1},{A_2}.) Mặt phẳng (P) cắt các cạnh SB, SC lần lượt tại ({B_1},{C_1}.) Mặt phẳng (Q) cắt các canhj SB, SC lần lượt tại ({B_2},{C_2}.) Chứng minh (B{B_1} = {B_1}{B_2} = {B_2}S) và (C{C_1} = {C_1}{C_2} = {C_2}S).

Xem lời giải

Bài 4.25 trang 94

Cho hình lăng trụ tứ giác ABCD. A’B’C’D’. Một mặt phẳng song song với mặt phẳng (A’B’C’D’) cắt các cạnh bên của hình lăng trụ lần lượt tại A”, B”, C”, D”. Hỏi hình tạo bởi các điểm A, B, C, D, A”, B”, C”, D” là hình gì?

Xem lời giải

Bài 4.26 trang 94

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G và G’ lần lượt là trọng tâm của hai tam giác ABC và A’B’C’. a) Chứng minh rằng tứ giác AGG’A’ là hình bình hành b) Chứng minh rằng AGC.A’G’C’ là hình lăng trụ

Xem lời giải

Bài 4.27 trang 94

Cho hình hộp ABCD.A’B’C’D’. Một mặt phẳng song song với mặt bên (ABB’A’) của hình hộp và cắt các cạnh AD, BC, A’D, B’C’ lần lượt tại M, N, M’, N’ (H.4.54). Chứng minh rằng ABNM.A’B’N’M” là hình hộp

Xem lời giải

Bài 4.28 trang 94

Cầu thang xương cá là dạng cầu thang có hình dáng tương tư như những đốt xương cá, thường có những bậc thang với khoảng mở lớn, tạo được sự nhẹ nhàng và thoáng đãng cho không gian sông. Trong Hình 4.55, phần mép của mỗi bậc thang, nằm trên tường song song với nhau. Hãy giải thích tại sao.

Xem lời giải