Bài 4.24 trang 94 SGK Toán 11 tập 1 - Kết nối tri thức>
Cho hình tứ diện SABC. Trên cạnh SA lấy các điểm ({A_1},{A_2})sao cho (A{A_1} = {A_1}{A_2} = {A_2}S.) Gọi (P) và (Q) là hai mặt phẳng song song với mặt phẳng (ABC) và lần lượt đi qua ({A_1},{A_2}.) Mặt phẳng (P) cắt các cạnh SB, SC lần lượt tại ({B_1},{C_1}.) Mặt phẳng (Q) cắt các canhj SB, SC lần lượt tại ({B_2},{C_2}.) Chứng minh (B{B_1} = {B_1}{B_2} = {B_2}S) và (C{C_1} = {C_1}{C_2} = {C_2}S).
Đề bài
Cho hình tứ diện SABC. Trên cạnh SA lấy các điểm \({A_1},{A_2}\)sao cho \(A{A_1} = {A_1}{A_2} = {A_2}S.\) Gọi (P) và (Q) là hai mặt phẳng song song với mặt phẳng (ABC) và lần lượt đi qua \({A_1},{A_2}.\) Mặt phẳng (P) cắt các cạnh SB, SC lần lượt tại \({B_1},{C_1}.\) Mặt phẳng (Q) cắt các canhj SB, SC lần lượt tại \({B_2},{C_2}.\) Chứng minh \(B{B_1} = {B_1}{B_2} = {B_2}S\) và \(C{C_1} = {C_1}{C_2} = {C_2}S\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Ba mặt phẳng đôi một song song chắn trên hai cát tuyến phân biệt bất kì những đoạn thẳng tương ứng tỉ lệ.
Lời giải chi tiết
Áp dụng định lí Thales cho ba mặt phẳng (ABC), (P), (Q) và hai cát tuyến SA, SC ta có:
\(\frac{{{C_2}S}}{{{A_2}S}} = \frac{{{C_1}{C_2}}}{{{A_1}{A_{2\;}}}} = \frac{{C{C_1}}}{{A{A_1}}}\) mà \(A{A_1} = {A_1}{A_2} = {A_2}S\).
Suy ra \(C{C_1} = {C_1}{C_2} = {C_2}S\).
Áp dụng định lí Thales cho ba mặt phẳng (ABC), (P), (Q) và hai cát tuyến SA, SB ta có:
\(\frac{{{B_2}S}}{{{A_2}S}} = \frac{{{B_1}{B_2}}}{{{A_1}{A_2}}} = \frac{{B{B_1}}}{{A{A_1}}}\) mà \(A{A_1} = A{A_2} = {A_2}S\).
Suy ra \(B{B_1} = {B_1}{B_2} = {B_2}S\).
- Bài 4.25 trang 94 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 4.26 trang 94 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 4.27 trang 94 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 4.28 trang 94 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 4.23 trang 94 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức