Bài 2.26 trang 56 SGK Toán 11 tập 1 - Kết nối tri thức>
Tổng 100 số hạng đầu của dãy số (left( {{u_n}} right))với ({u_n} = 2n - 1) là A. 199 B. ({2^{100}} - 1) C. 10 000 D. 9999
Đề bài
Tổng 100 số hạng đầu của dãy số \(\left( {{u_n}} \right)\)với \({u_n} = 2n - 1\) là
A. 199
B. \({2^{100}} - 1\)
C. 10 000
D. 9 999
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Chứng minh dãy số là cấp số cộng.
Dựa vào công thức tính tổng các số hạng trong cấp số cộng: \({S_n} = \frac{n}{2}\left[ {2{u_n} + \left( {n - 1} \right)d} \right]\) đế tính.
Lời giải chi tiết
Ta có: \({u_n} - {u_{n - 1}} = \left( {2n - 1} \right) - \left[ {2\left( {n - 1} \right) - 1} \right] = 2\)
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2 \times 1 - 1 = 1,\;\;\;d = 2\)
\({S_{100}} = \frac{{100}}{2}\left[ {2 \times 1 + \left( {100 - 1} \right).2} \right] = 10\;000\)
Chọn đáp án C.
- Bài 2.27 trang 57 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.28 trang 57 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.29 trang 57 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.30 trang 57 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.31 trang 57 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức