Bài 2.30 trang 57 SGK Toán 11 tập 1 - Kết nối tri thức


Tìm ba số, biết theo thứ tự đó chúng lập thành cấp số cộng và có tổng bằng 21, và nếu lần lượt cộng thêm các số 2;3;9 vào ba số đó thì được ba số lập thành một cấp số nhân.

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Tìm ba số, biết theo thứ tự đó chúng lập thành cấp số cộng và có tổng bằng 21, và nếu lần lượt cộng thêm các số 2;3;9 vào ba số đó thì được ba số lập thành một cấp số nhân.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của cấp số cộng và cấp số nhân:

\({u_k} = \frac{{{u_{k - 1}} + {u_{k + 1}}}}{2}\).

\(u_k^2 = {u_{k - 1}}.{u_{k + 1}}\).

Lời giải chi tiết

Gọi 3 số cần tìm lần lượt là: \({u_{n - 1}},\;{u_n},\;{u_{n + 1}}\)

Theo tính chất của cấp số cộng ta có: \({u_{n - 1}} + {u_{n + 1}} = 2{u_n}\)

Mà đề bài: \({u_{n - 1}} + {u_n} + {u_{n + 1}} = 21\)  suy ra \(3{u_n} = 21\;\)

  \(\begin{array}{l} \Leftrightarrow {u_n} = 7\\ \Leftrightarrow \left\{ \begin{array}{l}{u_{n - 1}} = {u_n} - d = 7 - d\\{u_{n + 1}} = {u_n} + d = 7 + d\end{array} \right.\end{array}\)

Lần lượt cộng thêm các số 2, 3, 9 vào 3 số ta được: \({u_{n - 1}} + 2,\;{u_n} + 3,\;{u_{n + 1}} + 9\) hay \(9 - d,\;10,\;16 + d\)

Theo tính chất của cấp số nhân ta có:

\(\begin{array}{l}\left( {9 - d} \right)\left( {16 + d} \right) = {10^2}\\ \Leftrightarrow {d^2} + 7d - 44 = 0\\ \Leftrightarrow \left[ \begin{array}{l}d =  - 11\\d = 4\end{array} \right.\end{array}\)      

Vậy 3 số cần tìm là: 18; 7; -4 hoặc 3; 7; 11.


Bình chọn:
4.5 trên 11 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí