

Giải mục 3 trang 54, 55 SGK Toán 11 tập 1 - Kết nối tri thức>
Cho cấp số nhân (left( {{u_n}} right)) với số hạng đầu ({u_1} = a) và công bội (q ne 1) Để tính tổng của n số hạng đầu ({S_n} = {u_1} + {u_2} + ldots + {u_{n - 1}} + {u_n})
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
HĐ3
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 3 trang 54 SGK Toán 11 Kết nối tri thức
Cho cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = a\) và công bội \(q \ne 1\).
Để tính tổng của n số hạng đầu \({S_n} = {u_1} + {u_2} + \ldots + {u_{n - 1}} + {u_n}\).
Thực hiện lần lượt các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng trên theo \({u_1}\) và q để được biểu thức tính tổng \({S_n}\) chỉ chứa \({u_1}\) và q.
b) Từ kết quả phần a, nhân cả hai vế với q để được biểu thức tính tích \(q.{S_n}\) chỉ chứa \({u_1}\) và \(q\).
c) Trừ từng vế hai đẳng thức nhận được ở cả a và b và giản ước các số hạng đồng dạng để tính \(\left( {1 - q} \right){S_n}\) theo \({u_1}\) và \(q\). Từ đó suy ra công thức tính \({S_n}\).
Phương pháp giải:
Để biểu diễn mỗi số hạng trong tổng \({S_n}\), ta dựa vào công thức tính số hạng tổng quát: \({u_n} = {u_1}.{q^{n - 1}}\).
Sau đó, ta cộng các số hạng trong dãy số ta được tổng các số hạng \({S_n}\).
Lời giải chi tiết:
a) \({u_2} = {u_1}.q\);
\({u_3} = {u_1}.{q^2}\);
…
\({u_{n - 1}} = {u_1}.{q^{n - 2}}\);
\({u_n} = {u_1}.{q^{n - 1}}\).
\({S_n} = {u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}\).
b) \(q{S_n} = q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n}\).
c) \({S_n} - q{S_n} = \left( {{u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}} \right)\)
\(- (q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n})\)
\( \Leftrightarrow \left( {1 - q} \right){S_n} = {u_1} - {u_1}{q^n} = {u_1}\left( {1 - {q^n}} \right)\)
\(\Rightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\)
CH2
Video hướng dẫn giải
Trả lời câu hỏi Câu hỏi 2 trang 54 SGK Toán 11 Kết nối tri thức
Nếu cấp số nhân có công bội q = 1 thì tổng n số hạng đầu \(S_n\) của nó bằng bao nhiêu?
Phương pháp giải:
Để biểu diễn mỗi số hạng trong tổng \({S_n}\), ta dựa vào công thức tính số hạng tổng quát: \({u_n} = {u_1}.{q^{n - 1}}\).
Sau đó, ta cộng các số hạng trong dãy số ta được tổng các số hạng \({S_n}\).
Lời giải chi tiết:
Nếu cấp số nhân có công bội q = 1 thì cấp số nhân là \(u_1, u_1, ..., u_1,...\)
Khi đó \({S_n} = u_1 + u_1 + ... + u_1 = n . u_1\) (tổng của n số hạng \(u_1\)).
VD
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng trang 55 SGK Toán 11 Kết nối tri thức
Một nhà máy tuyển thêm công nhân vào làm việc trong thời hạn ba năm và đưa ra hai phương án lựa chọn về lương như sau:
- Phương án 1: Lương tháng khởi điểm là 5 triệu đồng và sau mỗi quý, lương tháng sẽ tăng thêm 500 nghìn đồng.
- Phương án 2: Lương tháng khởi điểm là 5 triệu đồng và sau mỗi quý, lương tháng sẽ tăng thêm 5%.
Với phương án nào thì tổng lương nhận được sau ba năm làm việc của người công nhân sẽ lớn hơn?
Phương pháp giải:
Dựa vào đề bài xác định đâu là cấp số cộng, đâu là cấp số nhân.
Từ đó suy ra công thức tổng quát, thay giá trị n để tính được tổng lương và so sánh.
Lời giải chi tiết:
Theo phương án 1, tiền lương mỗi quý tạo thành cấp số cộng với:
\({u_1} = 5.3 = 15\), công sai \(d = 0,5.3 = 1,5\).
Công thức tổng quát \({u_n} = 15 + 1,5\left( {n - 1} \right)\).
Sau 3 năm làm việc (n = 12), lương của người nông dân là:
\(\frac{{12}}{2}\left[ {2.15 + \left( {12 - 1} \right). 1,5} \right] = 279\) (triệu đồng).
Theo phương án 2, tiền lương mỗi quý sẽ tạo thành cấp số nhân với:
\({u_1} = 5.3 = 15\), công bội \(q = 1,05\).
Công thức tổng quát \({u_n} = 15 .1,{05^{n - 1}}\).
Sau 3 năm làm việc (n = 12), lương của người nông dân là:
\(\frac{{15\left( {1 - 1,{{05}^{12}}} \right)}}{{1 - 1,05}} = 238,757\) (triệu đồng).
Vậy thì theo phương án 1 thì tổng lương nhận được của người nông dân cao hơn.


- Bài 2.15 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.16 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.17 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.18 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.19 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức