

Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Kết nối tri thức>
Cho dãy số (left( {{u_n}} right)) với ({u_n} = {3.2^n}) a) Viết năm số hạng đầu của dãy số này b) Dự đoán hệ thức truy hồi liên hệ giữa ({u_n}) và ({u_{n - 1}})
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
HĐ1
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 52 SGK Toán 11 Kết nối tri thức
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {3.2^n}\).
a) Viết năm số hạng đầu của dãy số này.
b) Dự đoán hệ thức truy hồi liên hệ giữa \({u_n}\) và \({u_{n - 1}}\).
Phương pháp giải:
Thay n tương ứng vào công thức số hạng tổng quát \({u_n}\).
Xét tỷ số \(\frac{{{u_n}}}{{{u_{n - 1}}}}\) để tìm mối liên hệ giữa \({u_n}\) và \({u_{n - 1}}\).
Lời giải chi tiết:
a) Ta có: \({u_1} = 6\); \({u_2} = 12\); \({u_3} = 24\); \({u_4} = 48\); \({u_5} = 96\).
b) Hệ thức truy hồi liên hệ giữa \({u_n}\) và \({u_{n - 1}}\) là: \({u_n} = 2{u_{n - 1}}\).
CH1
Video hướng dẫn giải
Trả lời câu hỏi Câu hỏi 1 trang 52 SGK Toán 11 Kết nối tri thức
Dãy số không đổi a, a, a,... có phải là một cấp số nhân không?
Phương pháp giải:
Để chứng minh dãy số \(\left( {{u_n}} \right)\) gồm các số khác 0 là một cấp số nhân, hãy chứng minh tỷ số \(\frac{{{u_n}}}{{{u_{n - 1}}}}\) = q không đổi.
Lời giải chi tiết:
Ta thấy tỉ số của các số hạng là \(\frac{a}{a} = 1, \forall n \ge 2\).
Như vậy, dãy số không đổi a, a, a,... là một cấp số nhân.
LT1
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 53 SGK Toán 11 Kết nối tri thức
Cho dãy số \({u_n}\) với \({u_n} = {2.5^n}\). Chứng minh rằng dãy số này là một cấp số nhân. Xác định số hạng đầu và công bội của nó.
Phương pháp giải:
Để chứng minh dãy số \(\left( {{u_n}} \right)\) gồm các số khác 0 là một cấp số nhân, hãy chứng minh tỷ số \(\frac{{{u_n}}}{{{u_{n - 1}}}}\) = q không đổi.
Lời giải chi tiết:
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{2 . {5^n}}}{{2 .{5^{n - 1}}}} = \frac{{2 . {5^n}}}{{2 \times {5^{n}.5^{- 1}}}} = 5,\;\forall n \ge 2\).
Vậy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân với \({u_1} = 10\) và công bội \(q = 5\).


- Giải mục 2 trang 53, 54 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải mục 3 trang 54, 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.15 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.16 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.17 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 119 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 111 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 95 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 84 SGK Toán 11 tập 1 - Kết nối tri thức