Bài 2.18 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức


Một cấp số nhân có số hạng đầu bằng 5 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 5115?

Đề bài

Một cấp số nhân có số hạng đầu bằng 5 và công bội bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số nhân này để có tổng bằng 5115?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Gọi n là số các số hạng đầu tiên trong cấp số cộng.

Dựa vào công thức tính tổng các số hạng trong cấp số cộng: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\) đế tính n.

Lời giải chi tiết

Ta có: \({S_n} = \frac{{5\left( {1 - {2^n}} \right)}}{{1 - 2}} =  - 5 + 5 \times {2^n}\;\)

 \(\begin{array}{l}5115 =  - 5 + {5.2^n}\\ \Leftrightarrow {2^n} = 1024 = 2.\\ \Rightarrow n = 10.\end{array}\)

Vậy phải lấy tổng 10 số hạng đầu. 


Bình chọn:
4.3 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí